
MODEL ANSWERS TO THE FIRST HOMEWORK

1.1.1 It is straightforward to check the identity

as − bs = (a− b)(as−1 + as−2b+ as−3b2 + · · ·+ bs−1).

If we put a = 2r and b = 1 then we get

Mn = 2n − 1

= (2r)s − 1s

= as − bs

= (a− b)(as−1 + as−2b+ as−3b2 + · · ·+ bs−1)

= (2r − 1)k

= kMr.

Thus Mr divides Mn.
1.3.1 (i) As

0 = 0 · a, a = 1 · a and a = ±1 · ±a.
it follows that

a|0, a|a and ± 1|a.
(ii) As a|b we may find k such that b = ka and as b|c we may find l so
that c = lb. Thus

c = lb

= l(ka)b

= kl(ab).

Thus b|c.
(iii) As a|b we may find k such that b = ka and as a|c we may find l so
that c = la. Thus

bx+ cy = (ka)x+ (la)y

= (kx+ ly)a.

Thus a|(bx+ cy).
1.3.3. (a) It is expedient to extend the Fibonacci sequence by starting
at 0 with 0,

0, 1, 1, 2, 3, . . . .

Let P (m,n) be the statement that

Fm+n+1 = FmFn + Fm+1Fn+1.
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We prove this by induction on m and n.
We first check that P (0, 0), P (1, 0), P (0, 1) and P (1, 1) all hold.
When m = n = 0 the LHS of the equation is

Fm+n+1 = F0+0+1 = F1 = 1

and the RHS of the equation is

FmFn + Fm+1Fn+1 = F0F0 + F1F1 = 0 + 1 = 1.

As both sides are equal, P (0, 0) holds.
When m = 1 and n = 0, the LHS of the equation is

Fm+n+1 = F1+0+1 = F2 = 1

and the RHS of the equation is

FmFn + Fm+1Fn+1 = F1F0 + F2F1 = 0 + 1 = 1.

As both sides are equal, P (1, 0) holds. By symmetry, P (0, 1) also holds.
When m = 1 and n = 1, the LHS of the equation is

Fm+n+1 = F1+1+1 = F3 = 2,

and the RHS of the equation is

FmFn + Fm+1Fn+1 = F1F1 + F2F2 = 1 + 1 = 2.

As both sides are equal, P (1, 1) holds.
Thus P (0, 0), P (1, 0), P (0, 1) and P (1, 1) all hold.
Now assume that P (i, j) holds for all i ≤ p and j ≤ q. Suppose that
p ≥ 1. Let us show that P (p+ 1, q) holds. We have

Fp+q+2 = Fp+q + Fp+q+1

= Fp−1Fq + FpFq+1 + FpFq + Fp+1Fq+1

= Fp−1Fq + FpFq + FpFq+1 + Fp+1Fq+1

= (Fp−1 + Fp)Fq + (Fp + Fp+1)Fq+1

= Fp+1Fq + Fp+2Fq+1,

where we used the recursive definition of the Fibonacci numbers for
the first line, the inductive hypotheses P (p − 1, q) and P (p, q) to get
from the first line to the second line, and the recursive definition of the
Fibonacci numbers to get from the fourth line to the fifth line.
Therefore P (p + 1, q) holds. We have shown that P (i, j) for all i ≤ p
and j ≤ q implies P (p+1, q). By symmetry, it follows that we can also
deduce P (p, q + 1) using the same hypotheses.
This completes the induction and the proof.
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(b) Fix r. We prove that Fn divides Frn by induction on n. The case
n = 1 is clear as F1 = 1 and 1 divides everything. Suppose that the
result is true for n. By (a) we have

F(r+1)n = FrnFn−1 + F(rn−1)Fn.

As the first term is divisible by Fn by induction and the second term
is visibly divisible by Fn, it follows that F(r+1)n is divisible by Fn by
1.3.1. This completes the induction and so Fn divides Frn for all r and
n.
1.3.4.

α > β =
1 +
√

5

2
.

We proceed by induction on n. For n = 0 we have

F0 = 0

< 1 = αn.

For n = 1, we have

F1 = 1

< β

< α

= αn.

Thus the result is true for n = 0 and n = 1.
Let f(x) = x2−x−1. As f ′(x) = 2x−1, f(x) is increasing for x ≥ 1/2.
As f(β) = 0 it follows that f(α) > 0, so that

(1 + α) < α2.

Now suppose the result is true for all integers up to n, where n ≥ 2.
We have

Fn+1 = Fn + Fn−1

< αn + αn−1

= αn−1(α + 1)

< αn−1(α2)

= αn+1.

This completes the induction and the proof.
1.4.3 (a) By induction on n. Note that the sum ranges over those
indices m = n− 2k − 1 such that 1 < m < n and n−m is odd.
If n = 1 then there are no integers 1 < m < 1 = n. Thus the result is
true for n = 1 for vacuous reasons.
Now suppose the result is true for n.
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Fn+1 = Fn + Fn−1

> Fn +
∑

m:1<m<n−1

Fm

=
∑

m:1<m<n+1

Fm.

Here all but the last sum run over integers m such that n−1−m is odd
and the last one runs over integers m such that n + 1 −m is odd. Of
course both of these parity conditions are the same. Since n+1−n = 1
is odd, the last sum includes the index m = n.
(b) We first prove existence. We proceed by induction on n. If n = 1
then we may take m = 1 and nm = 2; in this case 1 = F2.
Suppose the result is true for all integers up to n. Let n1 be the largest
integer such that n + 1 − Fn1 ≥ 0. Note that n1 ≥ 2. If n + 1 = Fn1

then we are done. Otherwise, by induction we may find an expression
of the form

n+ 1− Fn1 = Fn2 + Fn3 + · · ·+ Fnm ,

where m ≥ 2, nj−1 > nj + 1, for 3 ≤ j ≤ m and nm ≥ 2.
If n1 = n2 + 1 then

n+ 1 ≥ Fn1 + Fn1−1

= Fn1+1,

which contradicts our choice of n1. Thus n1 > n2 + 1. This completes
the induction and the proof of existence.
Now we turn to uniqueness. Suppose that we have two expressions of
the form

Fp1 + Fp2 + · · ·+ Fpm = Fq1 + Fq2 + · · ·+ Fqn ,

where m and n ≥ 1, pm and qn > 1, pi−1 ≥ pi + 2 and qj−1 ≥ qj + 2.
If there are two indices i and j such that pi = qj then we may cancel
Fpi and Fqj from both sides. Thus we may that there are no common
terms. Possibly switching the sides of the equation, we may assume
that p1 > q1. By (a) we have that

Fp1 >
∑

m:1<m<p1

Fm

≥ Fq1 + Fq2 + · · ·+ Fqn ,

a contradiction. This proves uniqueness.
1.4.4 (a) Consider numbers of the form 6k + r, 0 ≤ r ≤ 5. There are
six possibilities for r, 0, 1, 2, 3, 4 and 5. If r = 0, 2 or 4 then 6k + r
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is even. If r = 0 or 3 then 6k + r is divisible by 3. Thus if 6k + r is a
prime, not equal to either 2 or 3, then r = 1 or r = 5.
(b) We have

(6k + 1)(6l + 1) = 36kl + 6k + 6l + 1

= 6(6kl + k + 1) + 1.

Thus the set
{ 6k + 1 | k ∈ Z, k ≥ 0 }

is closed under multiplication.
(c) Note that 5 = 6 · 0 + 5 is a prime of the form 6k + 5.
Suppose that there are only finitely many natural numbers k1, k2, . . . , ka
such that pi = 6ki − 1 = 6(ki − 1) + 5 is a prime number. Let

N = 6
a∏

i=1

pi − 1.

Note that N = 6k + 5, where

k =
a∏

i=1

pi − 1.

Consider the prime factors of N . Primes of the form 6k + 1 are closed
under multiplication, so that N has at least one prime factor which is
not of the form 6k+1. Neither 2 nor 3 is a prime factor, by construction.
Similarly none of the primes p1, p2, . . . , pa are factors of N . This is a
contradiction. Thus there are infinitely many primes of the form 6k+5.
(d) Take b = 4. Any odd prime is of the form 4k+1 or 4k+3. Numbers
of the form 4k + 1 are closed under multiplication. 3 = 4 · 0 + 3 is a
prime of the form 4k + 3. Arguing as in (c) it follows that there are
infinitely many primes of the form 4k + 3.
1.4.9. Suppose that N = ab is odd, where a and b are natural numbers.
Possibly swapping a and b we may assume that a > b. As n is odd,
a and b are odd so that both a + b and b − a are even. We may find
natural numbers x and y such that 2x = a+ b and 2y = a− b.
In this case 2(x + y) = 2a and 2(x − y) = 2b, so that a = x + y and
b = x− y. But then

N = ab

= (x+ y)(x− y)

= x2 − y2.
Now N = N · 1 so that there is always at least one way to write N as a
difference of two squares. It follows that N is an odd prime if and only
if there is exactly one way to write N as a difference of two squares.
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