
FIRST MIDTERM

MATH 104A, UCSD, AUTUMN 17

You have 80 minutes.

There are 5 problems, and the total number of

points is 75. Show all your work. Please make

your work as clear and easy to follow as possible.

Name:

Signature:

Student ID #:

Section Time:

Problem Points Score

1 15

2 10

3 20

4 10

5 20

6 10

7 10

Total 75
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1. (15pts) (i) Give the definition of a prime number.

A natural number p is prime if p 6= 1 and the only divisors of p are 1
and p.

(ii) Give the definition of the greatest common divisor.

The greatest common divisor d of two numbers a and b, not both zero,
has the following properties:

(1) d|a and d|b.
(2) If d′|a and d′|b then d′|d.
(3) d > 0.

(iii) Give the definition of a group.

A group G is a set together with a rule of multiplication which satisfies
the following rules:

(1) Multiplication is associative, that is, a(bc) = (ab)c for all a, b
and c ∈ G.

(2) There is an identity e ∈ G such that ae = a = ea.
(3) Every element a ∈ G has an inverse b such that ab = e = ba.
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2. (10pts) Show that if Mn = 2n − 1 then Mrn is not prime if r > 1
and n > 1.

It is straightforward to check the identity

as − bs = (a− b)(as−1 + as−2b+ as−3b2 + · · ·+ bs−1).

If we put a = 2r and b = 1 then we get

Mn = 2n − 1

= (2r)s − 1s

= as − bs

= (a− b)(as−1 + as−2b+ as−3b2 + · · ·+ bs−1)

= (2r − 1)k

= kMr.

Thus Mr divides Mn. As r > 1, Mr > 1 and as n > 1, Mr 6= Mn. Thus
Mn is not a Mersenne prime.
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3. (20pts) (i) Show that if p = 6k + r is prime and 0 ≤ r < 6 then

either p = 2 or p = 3 or r = 1 or r = 5.

As 0 ≤ r < 6 it follows that r = 0, 1, 2, 3, 4 or 5. If r = 0, or r = 2 or
4 then p = 2(3k) or p = 2(3k + 1) or p = 2(3k + 2) and p is even. In
this case p = 2. If r = 3 then p = 3(2k+1) is divisible by 3 and p = 3.
Otherwise r = 1 or r = 5.

(ii) Show that the set

S = { 6k + 1 | k ∈ N }

is closed under multiplication.

Suppose that a and b ∈ S. Then we may find k and l such that
a = 6k + 1 and b = 6l + 1. In this case

ab = (6k + 1)(6l + 1)

= 36kl + 6k + 6l + 1

= 6(6kl + k + l) + 1.

Thus ab ∈ S and S is closed under multiplication.
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(iii) Show that there are infinitely many primes of the form 6k + 5.

We use a variation of Euclid’s argument. First note that 5 is a prime
of the form 6k + 5. Suppose that there are only finitely many primes,
p1, p2, . . . , pk, whose remainder is five when divided by 6.
Let

P =
k∏

i=1

pi.

Note that
6P − 1 = 6(P − 1) + 5,

has remainder 5 when divided by 6. Consider the prime factorisation of
6P − 1. As S is closed under multiplication and 6P − 1 /∈ S it follows
that one of the primes in the factorisation has a remainder different
fron one, after division by 6.
On the other hand, 6P − 1 not divisible by 2, 3, or any of the primes
p1, p2, . . . , pk, a contradiction. Therefore there are infinitely many primes
of the form 6k + 5.
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4. (10pts) (i) State the fundamental theorem of arithmetic.

If a is a non-zero integer then a is uniquely a product

a = ±1 · p1 · p2 . . . pk,

where pi ≤ pi+1 are primes.

(ii) Suppose that a, b and c are three integers. Show that if b|a, c|a and

(b, c) = 1 then bc|a.

We may find common prime factorisations

a = pe11 pe22 . . . pell b = pf11 pf22 . . . pfll and c = pg11 pg22 . . . pgll .

As b and c are coprime, it follows that figi = 0 for all i. As b|a it follows
that fi ≤ ei. As c|a it follows that gi ≤ ei. But then fi + g + i ≤ ei,
since one of fi and gi is zero. Thus

bc = pf1+g1
1 pf2+g2

2 . . . pfl+gl
l

divides a.
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5. (20pts) (i) Show that if a and b are integers, not both zero, and d is

the greatest common divisor, then we may find integers λ and µ such

that d = λa+ µb.

If a = 0 then

d = b

= 1 · 0 + 1 · b

= 1 · a+ 1 · b,

so that we may take λ = µ = 1 if ab = 0. Note that

d = (a, b) = (|a|, |b|).

If
d = λ|a|+ µ|b| then d = (±λ)a+ (±µ)b.

Thus we may assume that a and b > 0. We may assume that a ≤ b. If
we divide a into b we get

b = qa+ r where 0 ≤ r < a.

Note that {a, b} and {a, r} have the same common divisors, so that

d = (a, r).

By induction on a we may find integers λ and µ such that

d = λa+ µr.

As
r = b− qa,

it follows that

d = λa+ µr

= λa+ µ(b− qa)

= (λ− µq)a+ µb.

This completes the induction and the proof.
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(ii) Show that if p is a prime and p|ab then either p|a or p|b.

If p|a there is nothing to prove and so we may assume that p does not
divide a. As the only divisors of p are 1 and p and p does not divide
a, it follows that the only common divisor of p and a is 1. Thus the
greatest common divisor of p and a is 1. By (i) we may find λ and µ
such that

1 = λp+ µa.

If we multiply both sides of this equation by b then we get

b = λpb+ µab.

The first term is clearly divisible by p and the second term is divisible
by p by assumption. Thus p|b.
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Bonus Challenge Problems

6. (10pts) Show that every positive integer can be represented uniquely

in the form

Fn1
+ Fn2

+ · · ·+ Fnm
,

where m ≥ 1, nj−1 > nj + 1, for j = 2, 3, . . . , m and nm > 1.

We first prove existence. We proceed by induction on n. If n = 1 then
we may take m = 1 and nm = 2; in this case 1 = F2.
Suppose the result is true for all integers up to n. Let n1 be the largest
integer such that n + 1 − Fn1

≥ 0. Note that n1 ≥ 2. If n + 1 = Fn1

then we are done. Otherwise, by induction we may find an expression
of the form

n+ 1− Fn1
= Fn2

+ Fn3
+ · · ·+ Fnm

,

where m ≥ 2, nj−1 > nj + 1, for 3 ≤ j ≤ m and nm ≥ 2.
If n1 = n2 + 1 then

n+ 1 ≥ Fn1
+ Fn1−1

= Fn1+1,

which contradicts our choice of n1. Thus n1 > n2 + 1. This completes
the induction and the proof of existence.
Now we turn to uniqueness. We first establish that

Fn >
∑

m:1<m<n

Fm

where the sum ranges over those integers such that n −m is odd. By
induction on n.
If n = 1 then there are no integers 1 < m < 1 = n. Thus the result is
true for n = 1 for vacuous reasons. Now suppose the result is true for
n.

Fn+1 = Fn + Fn−1

> Fn +
∑

m:1<m<n−1

Fm

=
∑

m:1<m<n+1

Fm.

Here all but the last sum run over integers m such that n−1−m is odd
and the last one runs over integers m such that n + 1 −m is odd. Of
course both of these parity conditions are the same. Since n+1−n = 1
is odd, the last sum includes the index m = n.

8



Suppose that we have two expressions of the form

Fp1 + Fp2 + · · ·+ Fpm = Fq1 + Fq2 + · · ·+ Fqn ,

where m and n ≥ 1, pm and qn > 1, pi−1 ≥ pi + 2 and qj−1 ≥ qj + 2.
If there are two indices i and j such that pi = qj then we may cancel
Fpi and Fqj from both sides. Thus we may that there are no common
terms. Possibly switching the sides of the equation, we may assume
that p1 > q1.

Fp1 >
∑

m:1<m<p1

Fm

≥ Fq1 + Fq2 + · · ·+ Fqn ,

a contradiction. This proves uniqueness.
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7. (10pts) If n is a natural number then let

p(n) = 1 +
1

2
+

1

3
+

1

4
+ · · ·+

1

n
.

Show that if p(n) is an integer then n = 1.

Let

p(n) = 1 +
1

2
+

1

3
+

1

4
+ · · ·+

1

n
.

Let k be the largest integer such that 2k ≤ n. Note that no other
natural number between 1 and n is divisible by 2k. Thus if we multiply
both sides by 2k−1 every term

2k−1

i
for 1 ≤ i ≤ n, i 6= 2k,

of the sum has an odd denominator.
As the sum of rational numbers with an odd denominator, has an odd
denominator, it follows that 2k−1p(n) is a sum of 1/2 and a rational
number an with odd denominator. In particular p(n) is not an integer.
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