FIRST MIDTERM MATH 104A, UCSD, AUTUMN 17

You have 80 minutes.

There are 5 problems, and the total number of points is 75 . Show all your work. Please make your work as clear and easy to follow as possible.

Name: \qquad
Signature: \qquad
Student ID \#: \qquad
Section Time: \qquad

Problem	Points	Score
1	15	
2	10	
3	20	
4	10	
5	20	
6	10	
7	10	
Total	75	

1. (15pts) (i) Give the definition of a prime number.

A natural number p is prime if $p \neq 1$ and the only divisors of p are 1 and p.
(ii) Give the definition of the greatest common divisor.

The greatest common divisor d of two numbers a and b, not both zero, has the following properties:
(1) $d \mid a$ and $d \mid b$.
(2) If $d^{\prime} \mid a$ and $d^{\prime} \mid b$ then $d^{\prime} \mid d$.
(3) $d>0$.
(iii) Give the definition of a group.

A group G is a set together with a rule of multiplication which satisfies the following rules:
(1) Multiplication is associative, that is, $a(b c)=(a b) c$ for all a, b and $c \in G$.
(2) There is an identity $e \in G$ such that $a e=a=e a$.
(3) Every element $a \in G$ has an inverse b such that $a b=e=b a$.
2. (10pts) Show that if $M_{n}=2^{n}-1$ then $M_{r n}$ is not prime if $r>1$ and $n>1$.

It is straightforward to check the identity

$$
a^{s}-b^{s}=(a-b)\left(a^{s-1}+a^{s-2} b+a^{s-3} b^{2}+\cdots+b^{s-1}\right) .
$$

If we put $a=2^{r}$ and $b=1$ then we get

$$
\begin{aligned}
M_{n} & =2^{n}-1 \\
& =\left(2^{r}\right)^{s}-1^{s} \\
& =a^{s}-b^{s} \\
& =(a-b)\left(a^{s-1}+a^{s-2} b+a^{s-3} b^{2}+\cdots+b^{s-1}\right) \\
& =\left(2^{r}-1\right) k \\
& =k M_{r} .
\end{aligned}
$$

Thus M_{r} divides M_{n}. As $r>1, M_{r}>1$ and as $n>1, M_{r} \neq M_{n}$. Thus M_{n} is not a Mersenne prime.
3. (20pts) (i) Show that if $p=6 k+r$ is prime and $0 \leq r<6$ then either $p=2$ or $p=3$ or $r=1$ or $r=5$.

As $0 \leq r<6$ it follows that $r=0,1,2,3,4$ or 5 . If $r=0$, or $r=2$ or 4 then $p=2(3 k)$ or $p=2(3 k+1)$ or $p=2(3 k+2)$ and p is even. In this case $p=2$. If $r=3$ then $p=3(2 k+1)$ is divisible by 3 and $p=3$. Otherwise $r=1$ or $r=5$.
(ii) Show that the set

$$
S=\{6 k+1 \mid k \in \mathbb{N}\}
$$

is closed under multiplication.

Suppose that a and $b \in S$. Then we may find k and l such that $a=6 k+1$ and $b=6 l+1$. In this case

$$
\begin{aligned}
a b & =(6 k+1)(6 l+1) \\
& =36 k l+6 k+6 l+1 \\
& =6(6 k l+k+l)+1 .
\end{aligned}
$$

Thus $a b \in S$ and S is closed under multiplication.
(iii) Show that there are infinitely many primes of the form $6 k+5$.

We use a variation of Euclid's argument. First note that 5 is a prime of the form $6 k+5$. Suppose that there are only finitely many primes, $p_{1}, p_{2}, \ldots, p_{k}$, whose remainder is five when divided by 6 .
Let

$$
P=\prod_{i=1}^{k} p_{i}
$$

Note that

$$
6 P-1=6(P-1)+5
$$

has remainder 5 when divided by 6 . Consider the prime factorisation of $6 P-1$. As S is closed under multiplication and $6 P-1 \notin S$ it follows that one of the primes in the factorisation has a remainder different fron one, after division by 6 .
On the other hand, $6 P-1$ not divisible by 2,3 , or any of the primes $p_{1}, p_{2}, \ldots, p_{k}$, a contradiction. Therefore there are infinitely many primes of the form $6 k+5$.
4. (10pts) (i) State the fundamental theorem of arithmetic.

If a is a non-zero integer then a is uniquely a product

$$
a= \pm 1 \cdot p_{1} \cdot p_{2} \ldots p_{k}
$$

where $p_{i} \leq p_{i+1}$ are primes.
(ii) Suppose that a, b and c are three integers. Show that if $b|a, c| a$ and $(b, c)=1$ then $b c \mid a$.

We may find common prime factorisations

$$
a=p_{1}^{e_{1}} p_{2}^{e_{2}} \ldots p_{l}^{e_{l}} \quad b=p_{1}^{f_{1}} p_{2}^{f_{2}} \ldots p_{l}^{f_{l}} \quad \text { and } \quad c=p_{1}^{g_{1}} p_{2}^{g_{2}} \ldots p_{l}^{g_{l}}
$$

As b and c are coprime, it follows that $f_{i} g_{i}=0$ for all i. As $b \mid a$ it follows that $f_{i} \leq e_{i}$. As $c \mid a$ it follows that $g_{i} \leq e_{i}$. But then $f_{i}+g+i \leq e_{i}$, since one of f_{i} and g_{i} is zero. Thus

$$
b c=p_{1}^{f_{1}+g_{1}} p_{2}^{f_{2}+g_{2}} \ldots p_{l}^{f_{l}+g_{l}}
$$

divides a.
5. (20pts) (i) Show that if a and b are integers, not both zero, and d is the greatest common divisor, then we may find integers λ and μ such that $d=\lambda a+\mu b$.

If $a=0$ then

$$
\begin{aligned}
d & =b \\
& =1 \cdot 0+1 \cdot b \\
& =1 \cdot a+1 \cdot b,
\end{aligned}
$$

so that we may take $\lambda=\mu=1$ if $a b=0$. Note that

$$
d=(a, b)=(|a|,|b|) .
$$

If

$$
d=\lambda|a|+\mu|b| \quad \text { then } \quad d=(\pm \lambda) a+(\pm \mu) b .
$$

Thus we may assume that a and $b>0$. We may assume that $a \leq b$. If we divide a into b we get

$$
b=q a+r \quad \text { where } \quad 0 \leq r<a .
$$

Note that $\{a, b\}$ and $\{a, r\}$ have the same common divisors, so that

$$
d=(a, r) .
$$

By induction on a we may find integers λ and μ such that

$$
d=\lambda a+\mu r .
$$

As

$$
r=b-q a,
$$

it follows that

$$
\begin{aligned}
d & =\lambda a+\mu r \\
& =\lambda a+\mu(b-q a) \\
& =(\lambda-\mu q) a+\mu b .
\end{aligned}
$$

This completes the induction and the proof.
(ii) Show that if p is a prime and $p \mid a b$ then either $p \mid a$ or $p \mid b$.

If $p \mid a$ there is nothing to prove and so we may assume that p does not divide a. As the only divisors of p are 1 and p and p does not divide a, it follows that the only common divisor of p and a is 1 . Thus the greatest common divisor of p and a is 1 . By (i) we may find λ and μ such that

$$
1=\lambda p+\mu a
$$

If we multiply both sides of this equation by b then we get

$$
b=\lambda p b+\mu a b .
$$

The first term is clearly divisible by p and the second term is divisible by p by assumption. Thus $p \mid b$.

Bonus Challenge Problems

6. (10pts) Show that every positive integer can be represented uniquely in the form

$$
F_{n_{1}}+F_{n_{2}}+\cdots+F_{n_{m}},
$$

where $m \geq 1, n_{j-1}>n_{j}+1$, for $j=2,3, \ldots, m$ and $n_{m}>1$.

We first prove existence. We proceed by induction on n. If $n=1$ then we may take $m=1$ and $n_{m}=2$; in this case $1=F_{2}$.
Suppose the result is true for all integers up to n. Let n_{1} be the largest integer such that $n+1-F_{n_{1}} \geq 0$. Note that $n_{1} \geq 2$. If $n+1=F_{n_{1}}$ then we are done. Otherwise, by induction we may find an expression of the form

$$
n+1-F_{n_{1}}=F_{n_{2}}+F_{n_{3}}+\cdots+F_{n_{m}}
$$

where $m \geq 2, n_{j-1}>n_{j}+1$, for $3 \leq j \leq m$ and $n_{m} \geq 2$.
If $n_{1}=n_{2}+1$ then

$$
\begin{aligned}
n+1 & \geq F_{n_{1}}+F_{n_{1}-1} \\
& =F_{n_{1}+1},
\end{aligned}
$$

which contradicts our choice of n_{1}. Thus $n_{1}>n_{2}+1$. This completes the induction and the proof of existence.
Now we turn to uniqueness. We first establish that

$$
F_{n}>\sum_{m: 1<m<n} F_{m}
$$

where the sum ranges over those integers such that $n-m$ is odd. By induction on n.
If $n=1$ then there are no integers $1<m<1=n$. Thus the result is true for $n=1$ for vacuous reasons. Now suppose the result is true for n.

$$
\begin{aligned}
F_{n+1} & =F_{n}+F_{n-1} \\
& >F_{n}+\sum_{m: 1<m<n-1} F_{m} \\
& =\sum_{m: 1<m<n+1} F_{m} .
\end{aligned}
$$

Here all but the last sum run over integers m such that $n-1-m$ is odd and the last one runs over integers m such that $n+1-m$ is odd. Of course both of these parity conditions are the same. Since $n+1-n=1$ is odd, the last sum includes the index $m=n$.

Suppose that we have two expressions of the form

$$
F_{p_{1}}+F_{p_{2}}+\cdots+F_{p_{m}}=F_{q_{1}}+F_{q_{2}}+\cdots+F_{q_{n}}
$$

where m and $n \geq 1, p_{m}$ and $q_{n}>1, p_{i-1} \geq p_{i}+2$ and $q_{j-1} \geq q_{j}+2$. If there are two indices i and j such that $p_{i}=q_{j}$ then we may cancel $F_{p_{i}}$ and $F_{q_{j}}$ from both sides. Thus we may that there are no common terms. Possibly switching the sides of the equation, we may assume that $p_{1}>q_{1}$.

$$
\begin{aligned}
F_{p_{1}} & >\sum_{m: 1<m<p_{1}} F_{m} \\
& \geq F_{q_{1}}+F_{q_{2}}+\cdots+F_{q_{n}}
\end{aligned}
$$

a contradiction. This proves uniqueness.
7. (10pts) If n is a natural number then let

$$
p(n)=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\cdots+\frac{1}{n} .
$$

Show that if $p(n)$ is an integer then $n=1$.

Let

$$
p(n)=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\cdots+\frac{1}{n} .
$$

Let k be the largest integer such that $2^{k} \leq n$. Note that no other natural number between 1 and n is divisible by 2^{k}. Thus if we multiply both sides by 2^{k-1} every term

$$
\frac{2^{k-1}}{i} \quad \text { for } \quad 1 \leq i \leq n, \quad i \neq 2^{k}
$$

of the sum has an odd denominator.
As the sum of rational numbers with an odd denominator, has an odd denominator, it follows that $2^{k-1} p(n)$ is a sum of $1 / 2$ and a rational number an with odd denominator. In particular $p(n)$ is not an integer.

