
9. Euler and Fermat Theorems

Theorem 9.1 (Euler’s Theorem). If a and m are integers and (a,m) =
1 then

aϕ(m) ≡ 1 mod m.

Proof. Pick a reduced residue system a1, a2, . . . , aϕ(m). By (8.10)

aa1, aa2, . . . , aaϕ(m)

is also a reduced residue system. It follows that both products are
equal modulo m,

(aa1)(aa2)(aa3) . . . (aaϕ(m)) ≡ a1a2a3 . . . aϕ(m) mod m.

Rearranging, we get

aϕ(m)a1a2a3 . . . aϕ(m) ≡ a1a2a3 . . . aϕ(m) mod m.

As we have a group, we can cancel a1a2a3 . . . aϕ(m) from both sides, to
get

aϕ(m) ≡ 1 mod m. �

Corollary 9.2 (Fermat’s little Theorem). Let p be a prime and let a
be an integer.

If a is coprime to p then

ap−1 ≡ 1 mod p.

In particular

ap ≡ a mod p.

Proof. ϕ(p) = p− 1 and so the first statement follows from (9.1). For
the second statement there are two cases. If (a, p) = 1 multiply both
sides of

ap−1 ≡ 1 mod p

by a. If (a, p) 6= 1 then a is a multiple of p and a ≡ 0 mod p. The
equation

ap ≡ a mod p

is true as zero equals zero. �

Definition 9.3. Let m > 1 be a natural number and let a be an integer
coprime to m. The order of a is the smallest natural number t such
that

at ≡ 1 mod m.
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As
aϕ(m) ≡ 1 mod m,

the order a is always at most ϕ(m). Suppose we take m = 9 = 32.
Then

ϕ(9) = 9− 3 = 6.

In fact 1, 2, 4, 5, 7, 8 is a reduced residue system.

22 = 4 23 = 8 24 ≡ 7 25 ≡ 5 and 26 ≡ 1 mod 9.

Thus the order of 2 is 6. On the other hand,

52 ≡ 2 and 53 ≡ 1,

so that 5 has order 3, and
72 ≡ 1

so that 7 has order 2.

Theorem 9.4. If m > 1 is a natural number and a is an integer such
that (a,m) = 1 then the order of a divides ϕ(m).

Proof. Let t be the order of a. If we divide t into ϕ(m) we get

ϕ(m) = qt + r,

where 0 ≤ r < t. We have

n ≡ aϕ(m) mod m

= aqt+r

= (at)q + ar

≡ 1q + ar mod m

= ar.

As t is the smallest natural number such that at ≡ 1 mod m, r is not
a natural number, that is, r = 0.

It follows that the order of a divides ϕ(m). �

Theorem 9.5. If n is a natural number then∑
d|n

ϕ(d) = n.

Proof. If a is a natural number between 1 and n then the greatest
common divisor d of a and n is a divisor d of n.

Therefore we can partition the natural numbers from 1 to n into
parts

Cd = { a ∈ N | 1 ≤ a ≤ n, (a, n) = d },
where d ranges over the divisors of n.
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If a ∈ Cd then let b = a/d. It follows that (b, n/d) = 1 and 1 ≤ b ≤
n/d. Given b, note that a = bd. Thus

Cd = { a ∈ N | a = bd, 1 ≤ b ≤ n/d, (b, n/d) = 1 }.
It follows that the cardinality of Cd is simply the number of integers
between 1 and n/d coprime to n/d. We have

1 = |{ a ∈ N | 1 ≤ a ≤ n }|

=
∑
d|n

|Cd|

=
∑
d|n

ϕ(n/d)

=
∑
d|n

ϕ(d),

where we used the fact the terms of third and fourth sums are rear-
rangements of each other. �

For example, consider n = 10 = 2 · 5. The divisors of 10 are 1, 2, 5
and 10.

ϕ(1) = 1 ϕ(2) = 1 ϕ(5) = 4 and ϕ(10) = ϕ(2)ϕ(5) = 4.

As expected
1 + 1 + 4 + 4 = 10.
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