8. EULER ¢-FUNCTION

We have already seen that Z,,, the set of equivalence classes of the
integers modulo m, is naturally a ring. Now we will start to derive
some interesting consequences in number theory.

It is clear that the equivalence classes are represented by the integers
from zero to m — 1, [0], [1], [2], [3], ..., [m — 1]. Indeed, if a is any
integer we may divide m into a to get a quotient and a remainder,

a=mq-+r where 0<r<m-1.

In this case

From the point of view of number theory it is very interesting to
write down other sets of integers with the same properties.

Definition 8.1. A set S of integers is called a complete residue
system, modulo m, if every integer a € Z s equivalent, modulo m, to
ezxactly one element of S.

We have already seen that
{reZ|0<r<m-1}={0,1,2,....m—2,m—1}

is a complete residue system. Sometimes it is convenient to shift so
that 0 is in the centre of the system

{reZ| —-—m/2<r<m/2}={...,-2,-1,0,1,2,...}.
For example if m = 5 we would take —2, 1, 0, 1 and 2 and if m = 8 we
would take —3, —2, —1, 0, 1, 2, 3 and 4.
Fortunately it is very easy to determine if a set S is a complete
residue system:

Lemma 8.2. Let S C Z be a subset of the integers and let m be a
non-negative integer. If any two of the following two conditions hold
then so does the third, in which case S is a complete residue system.

(1) S has m elements.
(2) No two different elements of S are congruent.
(8) Every integer is congruent to at least one element of S.

Proof. We have already seen that
So={rezZl0<r<m-1}={0,1,2,....m—2,m—1}

is a complete residue system. Clearly Sy has m elements.
Note that there is a natural map

flS—>So,
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which sends an element a of S to its residue modulo m.

Note that (1) holds if and only if S and Sy have the same number
of elements; (2) holds if and only if f is injective and (3) holds if and
only if f is surjective.

It is then easy to see that any two of (1), (2) and (3) imply the
third. O

We can use (8.2)) to prove a nice:

Theorem 8.3. Let m be a positive integer and let ay,as, ..., ay 1S a
complete residue system, modulo m. Suppose that b and k € Z and
(k,m) = 1.
Then
ka1+b, kza2+b, ey k?(lm‘l—b,

15 also a complete residue system, modulo m.
Proof. Note that if ka; + b = ka; + b then a; = a;. Thus
kai + b, kas + b, cee ka,, + b,

is a sequence of m distinct integers. We check that (2) of ({8.2)) also
holds.
Suppose that

ka; +b=ka; +b mod m.
Then certainly
ka; = ka; mod m.
As (k,m) =1, it follows by (7.11) that

a; = a; mod m. [

We shall start dropping any reference to equivalence classes when we
work in the ring Z,,. This is purely a matter of notational convenience.
The ring Z,, has two operations, addition and multiplication. Note that

1

2=1+1
—2+41=1+1+1

4=3+1=1+1+1+1,

and so on, give all the elements of Z,, under addition. The group Z,,
under addition is called cyclic and 1 is called a generator.

It is more interesting to figure out what happens under multiplica-
tion. If p is a prime then the non-zero elements of Z, are a group under

multiplication. We will see that it is always cyclic.
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For example, suppose we take p = 7. We have
22=4 2°=8=1 mod7.
Thus
2t =2.23
—92.1
= 2.

If we keep going we will just get 1, 2 and 4 (there is a reason it is called
cyclic). Thus 2 is not a generator.
Now consider 3 instead of 2. We have

32=9=2 mod7 3*=3-2=6 3*=3.6=4 3=5 and 3°=1.

Thus the non-zero elements of Z; is a cyclic group with generator 3
(but not 2).

For general m, the non-zero elements of Z,, do not form a group
under multiplication. We have already seen that the product of two
elements might be zero, so that the set of non-zero elements is not
closed under multiplication.

Definition 8.4. Let m > 1 be an integer. U, is the set of units of Zy,.
It is not hard to check that U, is a group under multiplication.
Definition 8.5. The Euler p-function
p: N— N
Just sends m to the cardinality of U,,.
If p is a prime then every non-zero element of Z, is a unit, so that
pp) =p—1.

Lemma 8.6. Let m > 1 and a € Z be integers.
Then [a] is a unit if and only if (a,m) = 1.

Proof. 1f (a,m) = 1 then we can find integers A and p such that
1= Xa+ pum.

In this case

Thus [A] is the inverse of [al.



Conversely, suppose that [a] is a unit. Then we can find an integer
b such that

allb] = 1.
It follows that ab =1 mod m,[ t]}[lijt is, ab — 1 is divisible by m. Thus
ab—1=km,
for some integer k. Rearranging, we get
1= (-b)a+ km.
Thus (a,m) = 1. O

Lemma 8.7. If m is a natural number then @(m) is the number of
integers a from 0 to m — 1 coprime to m.

Proof. The elements of Z,, are represented by the integers a from 0 to
m — 1 and [a] is a unit if and only if it is coprime to m. O

This gives an easy way to compute the Euler ¢-function, at least for
small values of m. Suppose m = 6. Of the integers 0, 1, 2, 3, 4 and 5,
only 1 and 5 are coprime to 6. Thus ¢(6) = 2.

Definition 8.8. A set S of integers is called a reduced residue sys-
tem, modulo m, if every integer coprime to m is equivalent to exactly
one element of m.

Lemma 8.9. Let S C Z be a subset of the integers and let m be a
non-negative integer. If any two of the following two hold conditions
then so does the third, in which case S is a reduced residue system.

(1) S has p(m) elements.
(2) No two different elements of S are congruent.
(3) Every is congruent to at least one element of S.

Proof. A simple variation of the proof of (8.2)) O
Theorem 8.10. Let m be a positive integer and let ai, ay, . .., Gum) 18
a reduced residue system, modulo m.

If k € Z is the coprime to m then kay, kasg, ..., kayum) is also a
reduced residue system, modulo m.
Proof. Similar, and simpler, than the proof of (8.3)). O
Definition 8.11. We say that a function

fN— N

is multiplicative if f(mn) = f(m)f(n), whenever m and n coprime.

Theorem 8.12. ¢ is multiplicative.
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Proof. Suppose that m = 1. Then mn =1-n = n so that

p(m)o(n) = ¢(1)¢(n)
= ¢(n)
=¢(1-n)
— o(mn).
Thus the result holds if m = 1. Similarly the result holds if n = 1.
Thus we may assume that m and n > 1. Consider the array

0 1 2 m—1
m m+1 m + 2 m+ (m—1)
(n—:l)m (n—1:)m+1 (n—1:)m+2 (n—l)m;(m—l).

The last entry is nm — 1 and so this is a complete residue system,
modulo mn. Therefore ¢(mn) is the number of elements of the array
comprime to mn.

Pick a column and suppose the first entry is a. The other entries in
that column are m +a, 2m +a, ..., (n — 1)m + a and so every entry
in that column is congruent to a modulo m. So if a is not coprime to
m then no entry in that column is coprime to m, let alone mn. Thus
we can focus on those columns whose first entry a is coprime to a.

The first row is a complete residue system modulo m, so that ¢(m)
elements of the first row are coprime to m. Thus there are only ¢(m)
columns we need to focus on. On the other hand, the entries in this
column are the numbers m -1+ a, m -2+ a, m -3+ a, and so they are
a complete residue system modulo n, by . Thus ¢(n) elements of
this column are coprime to n.

Thus ¢(m)e(n) elements of the array are coprime to both m and n.
But as m and n are coprime, it follows that an integer [ is coprime to
mn if and only if it is coprime to m and n. Thus ¢(m)p(n) elements
of the array are coprime to mn. U

Multiplicative functions are relatively easy to compute; if
n=pi'ps...po
is the prime factorisation of n and f is multiplicative then
fln) = f1")f03) - Fo7).

Therefore it suffices to compute

f(%),

where p is a prime.



Lemma 8.13. If p is a prime then

p(p°) =p° —p"".
Proof. Consider the numbers from to 1 to p®. These are a complete
residue system. Now a is coprime to p° if and only if it is coprime to
p. In other words, a is not coprime to p® if and only if it is a multiple
of p. Of the numbers from 1 to p°, exactly

ZL —_ pefl
p
are multiples of p. Therefore the remaining
pe . pe—l
numbers are coprime to p°. U

Theorem 8.14. If
n=pi'ps...po
1s the prime factorisation of n then
p(n) = (7 —p7 P —p5") - (o — P ).
Question 8.15. How many units are there in the ring Zigss ?

In other words, what is the cardinality of Ujgsg? This is the same as
©(1656). We first factor 1656.

1656 = 2 - 828
=2%.414
=23.207
=2%.3.69
=2%.3%.23.

We have
©(1656) = p(2° - 3% - 23)

= 0(2%)p(3%)p(23)

= (22 —2%)(3? - 3)(23 - 1)

=4-6-22

=21.3.11

= 528.
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