
2. Induction and the division algorithm

The main method to prove results about the natural numbers is to
use induction. We recall some of the details and at the same time
present the material in a different fashion to the way it is normally
presented in a first course.

Principle 2.1 (Well-ordering principle). The natural numbers are well-
ordered, that is, every non-empty subset S of N contains a least ele-
ment; that is, there is an element a ∈ S such that a ≤ b for every
b ∈ S.

Note that it is not possible to prove the well-ordering principle (un-
less one assumes something equivalent such as the principle of math-
ematical induction). It is something that seems intuitevely clear that
we accept is a property of the natural numbers.

Proposition 2.2 (Archimedean principle). If a and b are any positive
integers, then there is a natural number n such that na ≥ b.

Proof. Suppose not, suppose that na < b for every natural number n.
Then the set

S = { b− na |n ∈ N }
is a subset of the natural numbers. As S is non-empty, it contains a
smallest element, b−ma, say.

However, b− (m+ 1)a ∈ S and

b− (m+ 1)a = (b−ma)− a
< b−ma,

which contradicts the fact that b−ma is the smallest element of S.
Thus the Archimedean principle does hold. �

Axiom 2.3 (Induction Principle). Let S be a set of natural numbers
with the properties:

(1) 1 ∈ S
(2) if k ∈ S then k + 1 ∈ S.
Then S = N.

Theorem 2.4. (2.1) and (2.3) are equivalent.

Proof. Assume that (2.1) holds. Let S ⊂ N be a subset of the natural
numbers with the properties

(1) 1 ∈ S
(2) if k ∈ S then k + 1 ∈ S.
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Let T = N \ S be the set of natural numbers not in S.
Suppose that T is non-empty. As we are assuming (2.1) T has a

smallest element a. As a 6= 1 as 1 ∈ S. As a is the smallest element of
T and a−1 is a natural number smaller than a, it follows that a−1 /∈ T ,
that is, a − 1 ∈ S. As a − 1 ∈ S it follows that a = (a − 1) + 1 ∈ S.
Thus a /∈ T , a contradiction.

Thus T is empty so that S = N. Thus (2.1) implies (2.3). (2.3).
Now suppose that (2.3) holds. Let S be the set of all natural numbers

n such that if T ⊂ N contains a number no bigger than n then T
contains a smallest element.

Note that if 1 ∈ T then 1 is the smallest element of T . Thus 1 ∈ S.
Suppose that k ∈ S and that T is a subset of the natural numbers
which contains k+ 1. There are two cases. Either k+ 1 is the smallest
element of T , in which case there is nothing to prove, or T contains
a smaller element a. Then T contains a number no bigger than k, so
that T contains a smallest element, as k ∈ S. Either way, T contains
a smallest element. Thus (2.3) implies (2.1). �

Theorem 2.5 (Division Algorithm). If a and b are integers and b 6= 0
then there are unique integers q and r, called the quotient and re-
mainder such that

a = qb+ r where 0 ≤ r < |b|.
Proof. We first prove this result under the additional assumption that
b > 0 is a natural number.

Let
S = { a− xb |x ∈ Z, a− xb ≥ 0 }.

If we put x = −|a| then

a− xb = a+ |a|b
|a|+ a

≥ |a| − |a|
= 0.

Thus S is non-empty. By the well-ordering principle S has a smallest
element r = a− qb.

Suppose that r ≥ b. Then

r − (q + 1)b = r − b ≥ 0

is a smaller element of S, a contradiction. Thus 0 ≤ r < b. This
establishes existence in the case b > 0.

Now suppose that

a = q1b+ r1 = q2b+ r2,
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where q1, q2, r1 and r2 are all integers and 0 ≤ ri < b. Then

(q1 − q2)b = r1 − r2.
Note that

−b < r1 − r2 < b.

Since r1 − r2 is a multiple of b, it follows that r1 − r2 = 0, that is,
r1 = r2. But then (q1−q2)b = 0, so that q1−q2 = 0 as b 6= 0. It follows
that q1 = q2. This establishes uniqueness, when b > 0.

It remains to deal with the case b < 0. In this case −b > 0 and there
are integers q and r such that

−a = q(−b) + r where 0 ≤ r < −b = |b|.
Multiplying through by −1 in the first equation we get

a = qb+ r where 0 ≤ r < |b|.
Finally suppose

a = qib+ ri where 0 ≤ ri < |b|,
for i = 1 and 2. In this case

−a = qi(−b) + ri where 0 ≤ ri < −b = |b|,
As −b > 0 it follows that q1 = q2 and r1 = r2. �

Definition 2.6. Let a and b be two integers, not both zero. The great-
est common divisor of a and b is the unique integer d with the
following properties

(1) d|a and d|b.
(2) If d′|a and d′|b then d′|d.
(3) d > 0.

Theorem 2.7 (Euclid). If a and b are two integers, not both zero, then
there is a unique greatest common divisor d.

Proof. We check uniqueness. Suppose that d1 and d2 are both the
greatest common divisor of a and b. As d1 is a common divisor and
d2 is the greatest common divisor, we have d2|d1. Similarly, as d2 is a
common divisor and d1 is the greatest common divisor, we have d1|d2.
Thus, we may find k1 and k2 such that d1 = k1d2 and d2 = k2d1. It
follows that

d2 = k2d1

= k1k2d2.

Thus k1k2 = 1 so that d1 = ±d2. As both d1 > 0 and d2 > 0 we must
have d1 = d2. Thus the greatest common divisor is unique.
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Now we turn to existence. If a = 0 then we take d = |b| > 0. Then
d|0 and d|b, so that d is common divisor. If d′|a and d′|b then surely d′

divides d = |b|. Thus d is the greatest common divisor. The case b = 0
can be handled by symmetry.

So we may assume that both a and b are non-zero. It is easy to see
that if d is the greatest common divisor of |a| and |b| then it is also the
greatest common divisor of a and b, so that we may assume that a and
b are positive. Possibly switching a and b we may assume that a ≥ b.
We may find q and r such that

a = qb+ r.

Note that if d divides b and r then it divides a. Conversely, if d divides
a and b then it divides r. Thus the pair { a, b } have the same common
divisors as the pair { b, r }. It follows that they have the same greatest
common divisors, as well. Therefore it suffices to show that b and r
have a greatest common divisor. But r < b ≤ a and so we are done by
induction on the maximum a of a and b. �

It is intereting to note that (2.7) gives an algorithm to find the
greatest common divisor of a pair of integers, known as the Euclidean
algorithm. It is easiest just to give an example.

Question 2.8. What is the greatest common divisor of 45 and 210?

We first divide 45 into 210,

210 = 4 · 45 + 30.

The quotient is 4 and the remainder is 30.
So it suffices to find the greatest common divisor of 45 and 30. We

divide 30 into 45,

45 = 1 · 30 + 15.

The quotient is 1 and the remainder is 15.
So it suffices to find the greatest common divisor of 15 and 30. We

divide 15 into 30,

30 = 2 · 15 + 0

The quotient is 2 and the remainder is 0.
So it suffices to find the greatest common divisor of 0 and 15, which

is 15. The greatest common divisor of 45 and 210 is 15.
Euclid’s algorithm has one very important consequence:

Corollary 2.9. Let d be the greatest common divisor of integers a and
b, not both zero.

Then there are integers λ and µ such that d = λa+ µb.
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Proof. If a = 0 then d = b and we make take λ = µ = 1. Similarly
if b = 0. Thus we may assume that a and b are non-zero. Note that
d is greatest common divisor of |a| and |b|. If d = λ|a| + µ|b| then
d = (±λ)a + (±µ)b, where we choose the negative sign if a or b is
negative.

Thus we may assume that both a and b are positive. We may assume
that a ≥ b. We may write

a = qb+ r,

where 0 ≤ r < b. d is the greatest common divisor of a and r, so that
by induction we may find x and y so that d = xb+ yr. In this case

d = xb+ yr

= xb+ y(a− qb)
= (q + x)b+ ya.

This completes the induction and the proof. �

Let us go back to the example above. As

45 = 1 · 30 + 15.

we have
15 = 45− 1 · 30.

As
210 = 4 · 45 + 30,

we have
30 = 210− 4 · 45.

Thus

15 = 45− 1 · 30

= 45− 1 · (210− 4 · 45)

= 3 · 45− 1 · 210.
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