
17. Jacobi Symbol

It is convenient to exend the definition of the Legendre symbol to
the case that the term on the bottom is not prime.

Definition 17.1. Let a and b be two integers where b is odd.(a
b

)
=

(
a

p1

)(
a

p2

)(
a

p3

)
. . .

(
a

pr

)
,

where b = p1p2 . . . pr is the factorisation of b into primes.

The Jacobi symbol has all of the properties of the Legendre symbol,
except one. Even if (a

b

)
= 1

it is not clear that a is a quadratic residue modulo b.

Example 17.2. Is 2 a square modulo 15?

The answer is no. 15 = 3 · 5 and so if 2 is a square modulo 15 it is a
square modulo 3. But 2 is not a square modulo 3. Let’s compute the
Jacobi symbol: (

2

15

)
=

(
2

3

)(
2

5

)
= (−1)2

= 1.

Note however if the Jacobi symbol is negative then a is not a qua-
dratic residue modulo b, since there must be one prime factor of b for
which the Legendre symbol is −1.

Theorem 17.3. We have the following relations for the Jacobi symbol,
whenever these symbols are defined:

(1) (a1a2
b

)
=
(a1
b

)(a2
b

)
.

(2) (
a

b1b2

)
=

(
a

b1

)(
a

b2

)
.

(3) If a1 ≡ a2 mod b then(a1
b

)
=
(a2
b

)
.

(4) (
−1

b

)
= (−1)(b−1)/2.
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(5) (
2

b

)
= (2)(b

2−1)/8.

(6) If (a, b) = 1 then (a
b

)
=

(
b

a

)
.

Example 17.4. Is 1001 a quadratic residue modulo 9907?

We already answered this type of question using Legendre symbols,
let’s now use Jacobi symbols.(

1001

9907

)
=

(
9907

1001

)
=

(
898

1001

)
=

(
2

1001

)(
449

1001

)
=

(
1001

449

)
=

(
103

449

)
=

(
449

103

)
=

(
37

103

)
=

(
103

37

)
=

(
29

37

)
=

(
37

29

)
=

(
8

29

)
=

(
2

29

)
= −1.

Thus 1001 is not a quadratic residue modulo 9907.
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Proof of (17.3). We first prove (1). Suppose that b = p1p2 . . . pr is the
prime factorisation of b. We have

(a1a2
b

)
=

(
a1a2
p1

)(
a1a2
p2

)
. . .

(
a1a2
pr

)
=

(
a1
p1

)(
a2
p1

)(
a1
p2

)(
a2
p2

)
. . .

(
a1
pr

)(
a2
pr

)
=
(a1
b

)(a2
b

)
.

This is (1).
We now prove (2). Suppose that b1 = p1p2 . . . pr and b2 = q1q2 . . . qs.

We have(
a

b1b2

)
=

(
a

p1

)(
a

p2

)
. . .

(
a

pr

)(
a

q1

)(
a

q2

)
. . .

(
a

qs

)
=

(
a

b1

)(
a

b2

)
.

This is (2).
We now prove (3). Suppose that b = p1p2 . . . pr is the prime factori-

sation of b. We have(a1
b

)
=

(
a1
p1

)(
a1
p2

)
. . .

(
a1
pr

)
=

(
a2
p1

)(
a2
p2

)
. . .

(
a2
pr

)
=
(a2
b

)
.

This is (3).
We now prove (4). Suppose that b = p1p2 . . . pr is the prime factori-

sation of b. We have (
−1

b

)
=

r∏
i=1

(
−1

pi

)

=
r∏

i=1

(−1)(pi−1)/2

= (−1)1/2
∑r

i=1(pi−1) .
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On the other hand, as m and n are odd, we have

(m− 1)(n− 1) ≡ 0 mod 4

mn− 1 ≡ (m− 1) + (n− 1) mod 4

mn− 1

2
≡ m− 12 +

n− 1

2
mod 2.

By induction on r it follows that

r∑
i=1

pi − 1

2
=

∏r
i=1 pi − 1

2
mod 2

b− 1

2
.

Thus is (4).
We now prove (5). Suppose that b = p1p2 . . . pr is the prime factori-

sation of b. We have (
2

b

)
=

r∏
i=1

(
2

pi

)

=
r∏

i=1

(−1)(p
2
i−1)/8

= (−1)1/8
∑r

i=1(p
2
i−1) .

On the other hand, as m and n are odd, we have m2 ≡ 1 mod 8 so
that

(m2 − 1)(n2 − 1) ≡ 0 mod 64

m2n2 − 1 ≡ (m2 − 1) + (n2 − 1) mod 64

m2n2 − 1

8
≡ m2 − 1

8
+

n2 − 1

8
mod 8.

By induction on r it follows that

r∑
i=1

p2i − 1

8
=

∏r
i=1 p

2
i − 1

8
mod 8

=
b2 − 1

8
.

Thus is (5).
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We now prove (6). Suppose that a = p1p2 . . . pr and b = q1q2 . . . qs.
As (a, b) = 1, pi 6= qj for all i and j. We have

(a
b

)( b

a

)
=

r∏
i=1

(
a

qi

) s∏
j=1

(
b

pj

)

=
s∏

j=1

r∏
i=1

(
pj
qi

) s∏
j=1

r∏
i=1

(
qi
pj

)

=
s∏

j=1

r∏
i=1

(
pj
qi

)(
qi
pj

)

=
s∏

j=1

r∏
i=1

(−1)
pj−1

2

qi−1

2

= (−1)
∑s

j=1

∑r
i=1

pj−1

2

qi−1

2

= (−1)
∑s

j=1

pj−1

2

∑r
i=1

qi−1

2

= (−1)
∑s

j=1
a−1
2

b−1
2 . �

We now use Jacobi symbols to give an ideal characterisation of when
a number is a square, using only modular arithmetic.

Theorem 17.5. An integer a is a square if and only if it is a square
modulo every prime p.

Proof. One direction is clear; if a = b2 then a ≡ b2 mod p.
Now suppose that a is a square modulo every prime p. More precisely

the equation

x2 ≡ a mod p,

has a solution for every prime p.
The proof divides into four cases. Consider the prime factorisation

of a. The first two cases cover the case when some prime factor has
odd exponent and the last two cases deal with the case when a is a
square up to sign. More precisely

I The exponent of 2 is odd.
II The exonent of 2 is even but some odd prime factor has odd

exponent.
III −a is a square.
IV a is a square.
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We show that we cannot be in cases (I), (II) or (III) by exhibiting
an integer P with the property that the Jacobi symbol( a

P

)
= −1.

In this case there must be a prime factor p of P with the propert that
the Legendre symbol (

a

p

)
= −1.

Case I: We may write a = ±2kb where b and k are odd. Since b is
odd, by the Chinese remainder theorem we may pick P such that

P ≡ 5 mod 8P ≡ 1 mod b.

We have (
2

P

)
= 1,

and so (
−2

P

)
=

(
−1

P

)(
2

P

)
=

(
2

P

)
= −1.

As k is odd, k − 1 is even and so(
2k−1

P

)
= 1.

Finally, since P ≡ 5 mod 8 we have P ≡ 1 mod 4 and so(
b

P

)
=

(
P

b

)
=

(
1

b

)
= 1.

It follows that ( a

P

)
=

(
±2

P

)(
2k−1

P

)(
b

P

)
= −1 · 1 · 1
= −1.

Case II: We may write a = ±22hqkb where b and k are odd, q is an
odd prime and (q, b) = 1. Pick an integer n which is not a quadratic
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residue modulo q. Since 4, b and q are pairwise coprime, by the Chinese
remainder theorem we may pick P such that

P ≡ 1 mod 4

P ≡ 1 mod b

P ≡ n mod q.

We have (
±1

P

)
= 1 and

(
22h

P

)
= 1.

Further, since P ≡ 1 mod 4 we have(
b

P

)
=

(
P

b

)
=

(
1

b

)
= 1

and (
qk

P

)
=
( q

P

)
=

(
P

q

)
=

(
n

q

)
= −1.

It follows that ( a

P

)
=

(
±1

P

)(
22h

P

)(
b

P

)(
qk

P

)
= 1 · 1 · 1 · −1

= −1.

Case III: We may write a = −b2. Pick P ≡ 3 mod 4 such that P is
coprime to b. We have ( a

P

)
=

(
−b2

P

)
=

(
−1

P

)(
b2

P

)
= −1 · 1
= −1. �
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