16. QUADRATIC RECIPROCITY
We now recall one of the most famous results in all of mathematics:

Theorem 16.1 (Quadratic reciprocity). Let p and q be two different
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Then
unless p =3 mod 4 and ¢ =3 mod 4, in which case
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Proof. By Gauss’s Lemma,
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where p is the number of elements of the sequence

¢ 2¢ 3¢ ... (p—2)¢/2 and  (p—1)g/2
which are equivalent to an element of the interval [—(p — 1)/2,0) and
v is the number of elements of the sequence

p 2 3p ... (¢—2)p/2 and  (¢—1)p/2
which are equivalent to an element of the interval [—(q — 1)/2,0).
Therefore we have to show that
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Consider a multiple zq with 1 < x < (p — 1)/2. If we pick y such
that

Succintly

p p
— < — < =
9 qr —py B

then qx — py is the unique element of
{a€Z| —-p/2<a<p/2}

equivalent to gr modulo p. If we flip the sign of the inequality above
we get
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so that
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It follows that y > —1/2, so that y > 0. Suppose that y = 0. Then
qr —py = qv >0,

and we don’t get a number with negative residue. Thus we may assume
that y > 0. On the other hand, for z < (p —1)/2, we have
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Thus we may assume that y € (0, (¢ — 1)/2]. It follows that p is the
number of elements in the set

R={(z,y)eZ’|xe(0,(p—1)/2,y € (0,(¢—1)/2] }
such that

0>qx—py>—§.

Similarly v is the number of elements in the set

R={(z,y) €Z’|x e (0,(p—1)/2,,y €(0,(¢—1)/2]}
such that

0>py—qx>—g.

Note that the points of the set R have to lie in one of four regions, the
two regions describe above or
py—qx>]—) or py—qx<—g.
2 2
If A is the number of points in the third region and p is the number of
points in the fourth region, we have
p—1 ¢—1

>\+u+u+p:T 5

since there are (p — 1)/2 choices for « and (¢ — 1)/2 choices for y.
Consider the numbers
,_p+1
T = 5 x and Yy = 5 Y
As z runs from 1 to (p—1)/2, 2’ runs down through the same numbers
and similarly for y.
Suppose that we have a point of the third region, so that

O>py—xy>g.
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Then

p—q
=5 — (py — qx)
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<—__
2 9
q
< ——.
9

Thus (2',y) is a point of the fourth region. Vice-versa, if we start with
a point (2/,y) of the fourth region then we get a point (z,y) of the
third region using the inverse transformation.

It follows that the third region has the same number of integer points
as the fourth region, that is, A = p. In this case

-1 ¢—1
p—-q—:)\+u+u+p

2 2
=2 +pu+v
=pu+v mod 2. 0

The following picture shows the four different regions

Question 16.2. Is 257 a quadratic residue modulo 2697
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Note that 257 and 269 are both prime numbers. 257 is congruent to
one modulo 4. Therefore if we apply quadratic reciprocity we have

257\ _ (269
269 ) \ 257

Thus 257 is not a quadratic residue modulo 269.
If we fix ¢ then we can use the law of quadratic reciprocity to decide
for which primes p that ¢ is a square modulo p.

Theorem 16.3. Fix an odd prime q.
If p is an odd prime then p has a unique representation of the form

p=4kq+ta 0<a<diq and a=1 mod 4,
for some k € Z. With this choice of a

()= ()
p a)
Proof. By the division algorithm we may write

p=A4gl+r,

where 0 < r < 4q and [ € Z. r is odd as p is odd and 4q¢k is even.
If r =1 mod 4 then we take a = r (and k = [). Otherwise r = 3
mod 4. In this case

p=4q(+1)+ (r —4q).
Let a=49g—rand k=104 1. Then 0 < a < 4q and
p = 4qk — a.

It is not hard to see this representation is unique.
It remains to check that
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There are two cases. If
p=4gk +a,
then p =1 mod 4 so that by quadratic reciprocity

(0)-)
-6)

p =4qk — a.

Now suppose that

Then p = —1 =3 mod 4. There are two cases. If ¢ =1 mod 4 then

-

and so we can apply quadratic reciprocity to get

(2)=C)

Finally, suppose that ¢ =3 mod 4. Then

(-

and so we can apply quadratic reciprocity to get



Lemma 16.4. Let g be an odd prime. The integers a such that

0 <a<4q, a=1 mod4 and <E>_1

q
are the remainders modulo 4q of the sequence of odd squares
1? 32, 52 . and (q—2)%

Proof. The remainders of the squares certainly lie between 1 and 4¢—1.
If bis odd then b> = 1 mod 4, and certainly a square is a square modulo

q.
Now suppose that a is an integer such that

0<a<4q, a=1 mod4 and (g)zl.
q

Then the equation

2 =a mod q

Has a solution b and we may assume that 1 < b < g—1. Note that ¢—b
is also a solution and one of b and ¢ — b is odd. So possibly replacing
b by ¢ — b we may assume that b is odd. Therefore

¥»=a mod g 1<b<qg—2 and b=1 mod 2.
But then
a=1=b mod 4.
Thus
a=b> mod 4q,

by the Chinese remainder theorem. O

We illustrate how to use these results in a couple of interesting cases.
Suppose that ¢ = 3. Then we are supposed to look at the squares up

to ¢ — 2, which is just 12 = 1. So if p is an odd prime such that 3 is a
square modulo p we must have

p=12k+1.

for some k, that is,
p==+1 mod 12.

As p is odd, the only other possibilities are 12k + 3 and 12k + 5. But
12k +£ 3 is divisible by 3 and so we must have p = 12k + 5. Putting all

of this together
3y 1 if p=+1 mod 12
p) |-1 ifp=+45 mod 12.
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Now suppose that we consider ¢ = 23. We consider the squares
1?3 5 77 9% 117 13 15% 170 197 217
Modulo 4g = 92 we get
19 25 49 81 29 77 41 13 85 73.
So 23 is a square modulo an odd prime p if and only if
p=+1 49 +13 425 429 +41 +49 +73 £77 +£81 +85 mod 92.
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