
15. Gauss Lemma

Let p be an odd prime. Recall that the set

S = { k ∈ Z | − (p− 1)/2 ≤ k ≤ (p− 1)/2 }
is a complete residue system modulo p.

Theorem 15.1 (Gauss’s Lemma). Let p be an odd prime and let a be
an integer coprime to p. Let µ be the number of elements of the set

{ ka | 1 ≤ k ≤ p− 1

2
}

which are equivalent modulo p to a negative element of S.
Then (

a

p

)
= (−1)µ.

Proof. We may assume that a is coprime to p. Note that ka is equiva-
lent to a unique element of S. Let r1, r2, . . . , be the positive elements
of S and −s1, −s2, . . . , the negative elements of S, we get this way.

Note that no two r’s are equal and no two s’s are equal. Suppose
that an r is equal to an s, that is, ri = sj. By assumption we may find
mi and mj such that mia ≡ ri and mja ≡ −sj. In this case

(mi +mj)a = mia+mja

≡ ri − sj mod p

= 0.

As a is coprime to p, mi +mj is divisible by p. On the other hand

mi +mj ≤ (p− 1)/2 + (p− 1)/2

= p− 1,

which is impossible.
Thus all of the (p − 1)/2 numbers ri and sj are distinct. As there

are (p−1)/2 such numbers between 1 and (p−1)/2, it follows that the
numbers ri and sj are precisely the numbers between 1 and (p− 1)/2.

Therefore

a · (2a) · (3a) . . . (p− 1)/2a ≡ r1 · r2 · r3 . . . )(−s1 · −s2 · −s3 . . . ) mod p

= (−1)µ(r1 · r2 · r3 . . . )(s1 · s2 · s3 . . . )
= (−1)µ1 · 2 · 3 · 4 · . . . (p− 1)/2

= (−1)µ((p− 1)/2)!.

But

a · (2a) · (3a) . . . (p− 1)/2a = a(p−1)/2((p− 1)/2)!.
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Cancelling the common factorial from both sides we get(
a

p

)
= a(p−1)/2

= (−1)µ. �

Example 15.2. Is 3 a quadratic residue modulo 37?

We have to consider the first 18 multiples of 3. They are

3 6 9 12 15 18 21 24 27 30 33 36 39 42 45 48 51 54.

These are equivalent to the following elements of S:

3 6 9 12 15 18 −16 −13 −10 −7 −4 −1 2 5 8 11 14 17.

Six of these are negative and so µ = 6. Therefore(
3

37

)
= (−1)6

= 1.

Thus 3 is a quadratic residue modulo 37.
Note that we do indeed get every integer from 1 to 18, up to sign.

Definition 15.3. If r is a real number xry is the largest integer smaller
than r.

x
√

2y = 1, xey = 2 and xπy = 3.

Theorem 15.4. If p is an odd prime then 2 is a quadratic residue of
p if and only if p is congruent to 1 or −1 modulo 8.

Succintly, (
a

p

)
= (−1)(p

2−1)/8.

Proof. We use (15.1). Consider the first (p − 1)/2 multiples of 2 .
Roughly half of these multiples lie in the interval (0, p/2) and the other
half in the interval (p/2, p). The ones in the interval (p/2, p) are equiv-
alent to the negative elements of S. Now

2k <
p

2
if and only if k <

p

4
.

Thus
bp

4
c

multiples lie in the interval (0, p/2). The rest lie in the interval (p/2, p)
and so

µ =
p− 1

2
− bp

4
c.
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We now consider cases.
If p = 8k + 1 then

µ =
(8k + 1− 1)

2
− b8k + 1

4
c = 4k − 2k = 2k.

If p = 8k + 3 then

µ =
(8k + 3− 1)

2
− b8k + 3

4
c = 4k + 1− 2k = 2k + 1.

If p = 8k + 5 then

µ =
(8k + 5− 1)

2
− b8k + 5

4
c = 4k + 2− 2k − 1 = 2k + 1.

If p = 8k + 7 then

µ =
(8k + 7− 1)

2
− b8k + 7

4
c = 4k + 3− 2k − 1 = 2k + 2.

Thus µ is even if and only if p ≡ ±1 mod 8. Thus 2 is a quadratic
residue if and only if p ≡ ±1 mod 8.

Finally note that (p2−1)/8 is even if and only if p ≡ ±1 mod 8. �

Definition 15.5. If m > 1 is an integer and (a,m) = 1 then we say
that a is a primitive root if the order of a is equal to ϕ(m).

Recall that the order t is the smallest natural number such that
at ≡ 1 mod m; the order always divides ϕ(m).

Example 15.6. Is 2 a primitive root of 13?

Let t be the order of 2. We want to decide if t = ϕ(13) = 12. t has
to divide 12, so that t = 1, 2, 3, 4, 6 or 12. 21 = 2 6= 1 mod 13 and
so t 6= 1. 22 = 4 6= 1 mod 13 and so t 6= 2. 23 = 8 6= 1 mod 13 and
so t 6= 3. 24 = 16 ≡ 3 mod 13 and so t 6= 4. Finally 26 = 4 · 3 = 12
mod 13. Thus t 6= 6. By a process of elimination t = 12 and so 2 is a
primitive root.

Theorem 15.7.

(1) If p = 4q+1 where q is an odd prime then 2 is a primitive root.
(2) If p = 2q + 1 where q is a prime of the form 4k + 1 then 2 is a

primitive root.
(3) If p = 2q + 1 where q is a prime of the form 4k − 1 then −2 is

a primitive root.

Proof. We first prove (1). If t is the order of 2 then t divides p−1 = 4q.
So t = 1, 2, 4, q, 2q or 4q. Now if t = 1, 2 or 4 then 24 ≡ 1 mod p, so
that p divides 15. But then p = 3, which is too small, or p = 5 so that
q = 1, which is not prime.
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Otherwise either t = 4q or t|(2q), so that it suffices to show 22q 6= 1
mod p. Suppose that q = 2k + 1. Then

p = 4q + 1

= 4(2k + 1) + 1

= 8k + 5.

Therefore

22q = 2(p−1)/2

=

(
2

p

)
mod p

= −1,

as p ≡ 5 mod 8.
Parts (b) and (c) are proved in a similar fashion. �

4


	15. Gauss Lemma

