12. BEYOND NEWTON-RAPHSON

Now let us consider the general problem of trying to find roots mod-
ulo m,
f(z) =0 mod m.
Let ¢;(m) be the number of solutions modulo m.
Theorem 12.1. The function
cp: N— N,
18 multiplicative.

Proof. Suppose that m and n are coprime. Suppose we are given a
solution a to the equation

f(z) =0 mod mn

Then
f(a) =0 mod mn
so that

fl@)=0 mod m and fla)=0 mod n.
Thus we get a solution to the equations
f(z)=0 modm and f(z)=0 mod n.
Now suppose we are given solutions b and ¢ to the equations
f(x)=0 mod m and f(x)=0 mod n.
It follows that
f(b)=0 modm and f(e) =0 mod n.

By the Chinese remainder theorem there is a unique residue class a
modulo mn such that

a=b modm and a=c mod n.
More to the point, as
fla)=f(b)=0 modm and fla)=f(e)=0 modn

again by the Chinese remainder theorem,

f(a) =0 mod mn,
so that a is a solution to the equation

f(z) =0 mod mn.
It is then clear that

cp(mn) = le(m)cf(n)- O



By the fundamental theorem of arithmetic, it follows that if we want
to solve the equation

f(x)=0 mod m

it suffices to deal with the case that m = p°, that is, we just have to
solve

f(z)=0 mod p°,

where p is a prime and e is a natural number.
Note that if

f(a) =0 mod p°,
then certainly
f(a)=0 mod p.

However we can’t go quite go backwards. For example if a is a solution
to the equation

f(z) =0 mod p.
it need not be a solution to the equation

f(z) =0 mod p*

From the first equation we know that f(a) is a multiple of p but not
necessarily a multiple of p®. On the other hand, note that

a a+p a+2p...a+(p—2)p and a+ (p—1)p,

are all different modulo p? and all equivalent to @ modulo p. So we
have to check to see which of these integers are solutions modulo p?.

Fortunately there is a much more elegant and convenient way to
proceed. The idea is to think of the problem of going from a solution
modulo p®~! to a solution modulo p¢ as a problem of approximation.

The classic method of approximation proceeds as follows. Suppose
you want to approximate the value of ¢ = v/2. This is a real number.
Suppose we already have an approximation xy, where we assume that
the difference h = £ — xy is relatively small. For example, 2.25 = 9/4
is a perfect square, so that xy = 3/2 is a reasonable approximation to
V2.

Introduce the function f(x) = z2. Suppose that f’'(zy) # 0. Write
down the Taylor series for f(x) centred around z,. We have

0= £(¢)
— f(zo) + hf'(z0) + % Fw0) + ..
~ f(xo) + hf'(xo).
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Here we assume that the terms involving h?, h? are small, as h is small.
It follows that a good approximation h for h is given by solving

flxo) + hf'(x0) = 0.

This gives
~ [(=o)

f'(@o)’
the usual formula for Newton-Raphson approximation. If zq is close
enough to & then x; will be closer to &.

We try the same idea to go from a solution modulo p® to a solution
modulo p™!. A polynomial has a very simple Taylor series that always
ends with the term of order A", where n is the degree of f,

f'(xo) J" (o)

flawo +h) = fwo) + f(wo)h+ =P oo T

Consider a term of the form ¢;z7 in the polynomial f(z). If we
differentiate this k& times then we have to multiply by

JjG=1...(J—k+1).
This term then makes a contribution of

JU-1. Gkt D) o <J> j—k

Tr1 = X

h™.

k! 70 k Cj Ty

In particular if ¢; is an integer then this contribution is an integer.
Thus if z is an integer and f(x) € Z[z| then the coefficients of the
Taylor series expansion are integers.

Suppose that xq is a solution to the equation

f(x)=0 mod p°,

so that
f(zo) =0 mod p°.

Now there are p residue classes modulo p°*! that have residue modulo
p°, namely,
Zo, To+p°, To+2p°, o zo+(p—2)p° and xo+(p—1)p°.

So we are looking for a solution of the form
Zo + tpev
where t is an integer, that is, we are trying to find ¢ such that

f(zo+tp®) =0 mod ptt.
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Note that if n = tp® then h?, h3, ..., are all zero modulo p**!. So if we
use the Taylor series expansion, we don’t just get an approximation,
we get an identity,

f(wo +t5°) = f(wo) + [(xo)tp*  mod pt.
If we want the LHS to be zero, this says

tp° f'(wo) = —f(zo) mod ptt.
By assumption there is an integer ¢ such that f(zg) = cp®. So, can-
celling the common factor of p¢, we get the linear congruence

tf'(zg) =c¢ mod p.
There are three cases.

(1) f'(=zp) is divisible by p and ¢ is not. There are no solutions in
this case.

(2) Both f'(zo) and ¢ are divisible by p. There are p solutions in
this case.

(3) f'(zo) is not divisible by p. There is one solution in this case.

We think of the first and second case as being degenerate. Both
cases are characterised by the fact that f’(z¢) = 0, modulo p. We call
x a singular solution. In case (3) we can solve for ¢, using the usual
formula.

To summarise, if we start with a solution x( to the equation

f(z) =0 mod p,

and f'(x9) # 0 mod p then we can successive solutions, modulo higher
and higher powers of p. If x is a singular solution then, at each step,
either there are no solutions modulo a higher power of p, or there are
p solutions.

In fact the hardest part of this process is to find the solutions modulo
p, but that is another story.
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