11. POLYNOMIAL CONGRUENCES

We now want to look at the problem of solving polynomial equations
modulo a natural number m. First note that the natural homomor-
phism

7 — L, which sends a—a
extends naturally to a homomorphism

Zx] — L[] which sends flz) — f(x).
If
f(z) = ap+ayz+- - Ha,x" then f(z) = ap+ayr+aga®+- - +a,a".
Note also that it makes sense to evaluate f(z) as @ € Z,,. In partic-
ular it makes sense to look for zeroes of polynomials in Z,,.
Note that if p is a prime then Z, is a field so that Z,[z] is a UFD;
every polynomial factors into prime polynomials, uniquely up to order

and units. On the other hand, if m is composite then 7Z,, is not even
an integral domain.

Proposition 11.1. Let f(x) € Z[x] and let p be a prime.
If a is a root of the congruence f(x) =0 mod p then x — a divides
f(z) in the ring Z,|z].

Proof. Since Z, is a field, the ring Z,[z] is a Euclidean domain. There-
fore we can divide (x —a) into f(z) to get a quotient and a remainder,

f@) = q(@)(z —a) + r(z),
where 7(z) = 0 or the degree of r(z) is less than the degree of x — a.

As the degree of x — @ is one, it follows that r(z) = r is a constant. If
we plug in a then we get

0= f(a)
= g(a)(a—a)+7
=r
Thus 7(z) = 0 and so = — a divides f(z). O

Theorem 11.2 (Lagrange’s Theorem). If p is a prime and f(x) € Z[z]
has degree n then the equation f(x) =0 mod p has at most n roots.

Proof. If @ is a root of f(z) =0 then (z — a) is a linear factor of f(x).
As Z,[x] is a UFD, f(x) can have at most n different linear factors. [

Note that this fails in general if m is composite. For example,
(x —2)(z —3) =2 -5z =2(r —5) mod 6,

so that 0, 2, 3 and 5 are all roots of the polynomial 2 — 5z, modulo 6.
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Theorem 11.3. Let p be a prime and let f(x) € Z[z] be a polynomial
of degree n.

The number of distinct roots of f(x) is the degree of the polynomial
(f(x), 2P —z). In particular f(x) has exactly n roots if and only if f(z)
divides xP — x.

Proof. Fermat’s theorem implies that if a € Z, then
a’ = a € Zy.

Thus a is a root of a? — x € Z,[z]. It follows that x, z — 1, 2 —2, ...,
x + 1 — p are all linear factors of 2P — z. As the product

zz—1)(z—2)...(r—p+1)
has degree p and it is monic, it follows that
P —r=x(r—-1)(z—-2)...(x —p+1) € Zy[x].
Suppose that r is a root of f(x). Then we can write
f() = (@ —r)g(a),
for some natural number e, which we will call the multiplicity. So if

f(z) has roots ry,rs, ..., with multiplicities eq, e, ..., e, then we
may write

fla) = (z =) (@ —r)® .. (2 —r)%g(2),
where g(z) € Z,[x] has no roots. It follows that
(f(x), 2P —z)=(x —1)(x —719) ... (T —1p).
Clearly this is a polynomial of degree k, the number of roots of f(z).

If f(z) has n distinct roots, then 71 = ry = -+ = rp and k = n so
that f(z) divides 2P — x. O

Corollary 11.4. Let d be a natural number and let p be a prime.
If d divides p—1 then the congruence @ =1 mod p has d solutions.

Proof. Note that
yol=(y- DT Yy .
By assumption there is an integer k& such that p — 1 = dk. Therefore
P — gz =ax(2aPt 1)
z(z¥%® — 1)
()" = 1)
= 2(z? — 1)) 422D g ).

Thus 2% — 1 divides 27 — z so that 2% — 1 has d distinct roots by

([I1.3). O
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Theorem 11.5 (Wilson’s Theorem). If p is a prime number then
(p—1)!'=-1 mod p.
Proof. If p = 2 then the result is clear. Otherwise p is odd. We have
already seen that
P —r=xx—-1)(x—-2)...(z—(p+1)) mod p.
Cancelling a factor of x from both sides, we get
P —1l=(@-1)(r-2)...(x—(p+1)) mod p.

The constant term on the LHS is —1 and the constant term on the
RHS is

(p—1L O
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