
11. Polynomial congruences

We now want to look at the problem of solving polynomial equations
modulo a natural number m. First note that the natural homomor-
phism

Z −→ Zm which sends a −→ ā

extends naturally to a homomorphism

Z[x] −→ Zm[x] which sends f(x) −→ f̄(x).

If

f(x) = a0+a1x+· · ·+anx
n then f̄(x) = ā0+ā1x+ā2x

2+· · ·+ānx
n.

Note also that it makes sense to evaluate f̄(x) as ā ∈ Zm. In partic-
ular it makes sense to look for zeroes of polynomials in Zm.

Note that if p is a prime then Zp is a field so that Zp[x] is a UFD;
every polynomial factors into prime polynomials, uniquely up to order
and units. On the other hand, if m is composite then Zm is not even
an integral domain.

Proposition 11.1. Let f(x) ∈ Z[x] and let p be a prime.
If a is a root of the congruence f(x) ≡ 0 mod p then x− ā divides

f̄(x) in the ring Zp[x].

Proof. Since Zp is a field, the ring Zp[x] is a Euclidean domain. There-
fore we can divide (x− ā) into f̄(x) to get a quotient and a remainder,

f̄(x) = q(x)(x− ā) + r(x),

where r(x) = 0 or the degree of r(x) is less than the degree of x − ā.
As the degree of x− ā is one, it follows that r(x) = r is a constant. If
we plug in a then we get

0 = f̄(ā)

= q(ā)(ā− ā) + r

= r.

Thus r(x) = 0 and so x− ā divides f̄(x). �

Theorem 11.2 (Lagrange’s Theorem). If p is a prime and f(x) ∈ Z[x]
has degree n then the equation f(x) ≡ 0 mod p has at most n roots.

Proof. If ā is a root of f̄(x) = 0 then (x− a) is a linear factor of f̄(x).
As Zp[x] is a UFD, f̄(x) can have at most n different linear factors. �

Note that this fails in general if m is composite. For example,

(x− 2)(x− 3) = x2 − 5x = x(x− 5) mod 6,

so that 0, 2, 3 and 5 are all roots of the polynomial x2− 5x, modulo 6.
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Theorem 11.3. Let p be a prime and let f(x) ∈ Z[x] be a polynomial
of degree n.

The number of distinct roots of f(x) is the degree of the polynomial
(f(x), xp−x). In particular f(x) has exactly n roots if and only if f(x)
divides xp − x.

Proof. Fermat’s theorem implies that if a ∈ Zp then

ap = a ∈ Zp.

Thus a is a root of xp − x ∈ Zp[x]. It follows that x, x− 1, x− 2, . . . ,
x + 1− p are all linear factors of xp − x. As the product

x(x− 1)(x− 2) . . . (x− p + 1)

has degree p and it is monic, it follows that

xp − x = x(x− 1)(x− 2) . . . (x− p + 1) ∈ Zp[x].

Suppose that r is a root of f(x). Then we can write

f(x) = (x− r)eg(x),

for some natural number e, which we will call the multiplicity. So if
f(x) has roots r1, r2, . . . , rk with multiplicities e1, e2, . . . , ek then we
may write

f(x) = (x− r1)
e1(x− r2)

e2 . . . (x− rk)ekg(x),

where g(x) ∈ Zp[x] has no roots. It follows that

(f(x), xp − x) = (x− r1)(x− r2) . . . (x− rk).

Clearly this is a polynomial of degree k, the number of roots of f(x).
If f(x) has n distinct roots, then r1 = r2 = · · · = rk and k = n so

that f(x) divides xp − x. �

Corollary 11.4. Let d be a natural number and let p be a prime.
If d divides p−1 then the congruence xd ≡ 1 mod p has d solutions.

Proof. Note that

yk − 1 = (y − 1)(yk−1 + yk−2 + · · ·+ 1).

By assumption there is an integer k such that p− 1 = dk. Therefore

xp − x = x(xp−1 − 1)

= x(xdk − 1)

= x((xd)k − 1)

= x(xd − 1)(xd(k−1) + xd(k−2) + · · ·+ xd + 1).

Thus xd − 1 divides xp − x so that xd − 1 has d distinct roots by
(11.3). �
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Theorem 11.5 (Wilson’s Theorem). If p is a prime number then

(p− 1)! ≡ −1 mod p.

Proof. If p = 2 then the result is clear. Otherwise p is odd. We have
already seen that

xp − x = x(x− 1)(x− 2) . . . (x− (p + 1)) mod p.

Cancelling a factor of x from both sides, we get

xp−1 − 1 = (x− 1)(x− 2) . . . (x− (p + 1)) mod p.

The constant term on the LHS is −1 and the constant term on the
RHS is

(p− 1)!. �
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