
1. Introduction to Number theory

Number theory is to do with the study of the natural numbers,

N = { 1, 2, 3, . . . }.

There are two key operations on the natural numbers, addition and
multiplication,

+: N× N −→ N and · : N× N −→ N.

Results in number theory are statements about the interaction of the
two:

∀n ∈ N, x ∈ N, y ∈ N, z ∈ N (n > 2, x > 0, y > 0, z > 0) =⇒ (xn+yn 6= zn)

This is a statement of Fermat’s last Theorem.
It is a curious fact that if one forgets about multiplication and con-

centrates just on addition then there is a computer program to decide
if the statement is true. On the contrary a famous theorem of Gödel
states that it is not possible to prove every true statement in number
theory. It is the interaction between addition and multiplication that
makes number theory interesting.

It is very easy to state true results in number theory but it is some-
time suprisingly challenging to prove them. Herein lies the charm of
number theory. There are an enormous number of different techniques
ranging for elementary to very sophisticated to prove results in number
theory.

Let me start with an easy example of a problem which it is quite
likely that no-one will ever solve. Consider the following algorithm.

Two versus three

(1) Pick a natural number n.
(2) If the number is one then STOP.
(3) If the number is even then divide it by two and GOTO (2).
(4) If the number is odd but not one then multiply it by three, add

one and GOTO (2).

As with any algorithm the most interesting mathematical question is
whether or not this algorithm stops after finitely many times or whether
or not it continues for ever. To truly understand both the algorithm
and the problem, it helps to look at a lot of examples; here are a couple
of examples.

Suppose we pick n = 3. 3 6= 1 so we don’t stop. 3 is not even so we
don’t divide it by 2. So we multiply by 3 and add 1 to get 3 ·3+1 = 10.

1



Using the obvious notation we get the following sequence of numbers:

3→ 5→ 16→ 8→ 4→ 2→ 1.

In the end, it is a question of the proportion (or ratio) of the even
numbers versus multiples of three.

There are many famous problems and results in number theory.
One striking early result is due to Fermat:

Theorem 1.1. Every natural number is a sum of four squares.

Here the square is allowed to be zero. We illustrate this theorem
with some the first couple of examples:

1 = 12 + 0 + 0 + 0

2 = 12 + 12 + 0 + 0

3 = 12 + 12 + 12 + 0

4 = 12 + 12 + 12 + 12

5 = 22 + 12 + 02 + 02,

and so on.

Definition 1.2. Let a and b be two natural numbers.
We say that b divides a, denoted b|a, if there is a natural number c

such that a = bc. b is called a divisor of a.

Note that 1 divides every natural number, as a = a · 1. Note that
every natural number divides itself as a = 1 · a.

Definition 1.3. Let p ∈ N be a natural number. We say that p is
prime if it is not equal to one and the only divisors of p are 1 and p.

Prime numbers have fascinated mathematicians for centuries. Many
results in number theory can be reduced to the case of prime numbers.
For example, it suffices to check Fermat’s last theorem in the case when
the exponent is prime. Even though the definition of a prime number
is so simple, in fact prime numbers appear quite randomly. Here is a
list of the first few prime numbers:

2, 3, 5, 7, 11, 13, 17, 19, 23, 29, . . . .

There are two interesting features of this sequence. It is clear that
primes become more sparse as they increase; one can see this by look-
ing at tables and it makes sense if you think about the sieve of Eratos-
thenes, where you know all even numbers, all multiples of three, all
multiples of five, are not prime (apart from the obvious exceptions, 2,
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3, 5, etc). Looking at tables of primes, Gauss guessed the number π(x)
of primes up to x is approximately given by an integral:

π(x) '
∫ x

2

dt

log t
.

In fact this is true and an accurate estimate of the error term is called
the prime number theorem.

The second interesting feature is that ood primes sometimes come
in pairs, 3, 5; 5, 7; 11, 13, and so on. Any pair of primes p and q such
that q−p = 2 are called twin primes. The twin prime conjecture states
that there are infinitely many twin primes.

Quite recently, Yitang Zhang made a spectacular breakthrough to-
wards the twin prime conjecture. He proved:

Theorem 1.4. There are infinitely many pairs of primes p and q such
that p < q and q − p < 7× 107.

Building on this work, Tao (conducting a joint effort over the inter-
net) and Maynard reduced the gap seventy million to 246. For the twin
prime conjecture we need to get down to a gap of two. Before the work
of Zhang, no finite gap was known.
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