
MODEL ANSWERS TO THE NINTH HOMEWORK

1. Put an order on the elements of N, by saying that m ≤ n if and
only if m divides n.
2. (a) Let α be a root of f(x). Then α has degree three over K, so
that M = K(α) has degree three over K. By uniqueness, M ' F27 so
that in particular M/K is normal. Thus f(x) splits in M and L = M .
(b) Done in part (a).
(c) Note that a cubic f(x) is reducible if and only if it has a linear
factor if and only if it has a root. Thus

f(x) = x3 + 2x+ 1,

is irreducible over F3, as 0, 1 and 2 are not roots of f(x).
(d) Every element of L is uniquely of the form

a+ bα + cα2,

where a, b and c ∈ F3. It is clear how add two such elements. To
multiply it suffices to compute αiαj, for i and j ∈ {0, 1, 2}. If i+j ≤ 2,
then

αiαj = αi+j.

Otherwise we need to use the relation

α3 = α + 2,

which is derived from the fact that α is a root of f(x).
If i+ j = 3, then

αiαj = α3

= α + 2.

If i+ j = 4, then

αiαj = α4

= αα3

= α(α + 2)

= α2 + 2α.

This completely specifies the addition and multiplication in L.
(e) Suppose we are given γ = a + bα + cα2. Then we want to find β
such that

γβ = 1.
1



Formally, we set
β = a′ + b′α + c′α2.

Then we have

(a+ bx+ cx2)(a′ + b′x+ c′x2) = 1 + g(x)(x3 + 2x+ 1),

where g(x) is a polynomial, which by inspection has degree at most
one.
In practice solving these equations is rather involved and quite often
we can just guess the inverse. For example, suppose we want to find
the inverse of α itself. As

α3 + 2α + 1 = 0,

we have
α(α2 + 2) = −1,

so that the inverse of α is −(α2 + 2).
3. (a) As L is generated by t, any automorphism of L over K is
determined by its action on t and it must send t to another generator
α = f(x)/g(x) of L. We have already seen that L = K(α) if and
only if the maximum of the degrees of f(x) and g(x) is one. Thus an
automorphism of L must send to

t −→ at+ b

ct+ d

as the general polynomial of degree one has the form at+ b. Of course
f(t) and g(t) are coprime, that is, one is not a scalar multiple of the
other. This is equivalent to requiring that the two vectors (a, b) and
(c, d) are independent, which in turn is equivalent to the non-vanishing
of the determinant,

ad− bc.
(b) Define a map

ρ : GL(2, K) −→ Gal(L/K)

by sending the matrix (
a b
c d

)
to the transformation

t −→ at+ b

ct+ d
.

It is easy, but somewhat tedious, to check that ρ is a homomorphism.
ρ is clearly surjective. The kernel of ρ consists of all matrices such that

t =
at+ b

ct+ d
.
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It is easy to see that these are precisely the scalar matrices.
4. (a) If n = 1, we have

x− α
so that

α

is the only elementary symmetric polynomial. If n = 2 we have

(x− α)(x− β) = x2 − (α + β)x+ αβ.

Thus the elementary symmetric polynomials are

α + β and αβ.

If n = 3 we have

(x− α)(x− β)(x− γ) = x2− (α+ β + γ)x3 + (αβ + βγ + αγ)x+ αβγ,

so that the elementary symmetric polynomials are

α + β + γ, αβ + αγ + βγ and αβγ.

Finally if n = 4 we have

(x− α)(x− β)(x− γ)(x− δ) = x4 − (α + β + γ + δ)x3

+(αβ+βγ+αγ+αδ+βδ+γδ)x−(αβγ+αβδ+αγδ+βγδ)x+αβγδ,

so that the elementary symmetric polynomials are

α+β+γ+δ, αβ+αγ+βγ+αδ+βδ+γδ, αβγ+αβδ+αγδ+βγδ

and αβγδ.

(b) LetK be any field and set L = K(α1, α2, . . . , αn) where α1, α2, . . . , αn
are indeterminates over K. Sn acts on L in the obvious way. Let M
be the fixed field. Then L/M is Galois, with Galois group Sn. Let
N be the intermediary field generated by the elementary symmetric
polynomials. Then N ⊂M . On the other hand, the polynomial

f(x) = (x− α1)(x− α2) . . . (x− αn)

splits in L and by definition f(x) ∈ N [x], as the elementary symmet-
ric polynomials are the coefficients of f(x). Thus L/N is a splitting
field for f(x). In particular L/N has degree at most n! (proved in a
previous hwk). By the Tower Law, M = N . Now a polynomial is
symmetric if and only if it lies in M . But the elements of N are pre-
cisely the rational functions of the elementary symmetric polynomials
so every symmetric polynomial is a rational function of the elementary
symmetric polynomials.
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(c) Consider squaring α + β + γ. We get

(α + β + γ)2 = α2 + β2 + γ2 + 2(βγ + αγ + αβ).

Thus
α2 + β2 + γ2 = (α + β + γ)2 − 2(βγ + αγ + αβ).

(d) Comparing coefficients, we have

α + β + γ − a and βγ + αγ + αβ = b.

Thus
α2 + β2 + γ2 = a2 − 2b.

5. (a) This is basically completing the square. Thus the automorphism

x −→ x− an−1
n

will work.
For the cubic, we use

x −→ x− a

3
.

We get

y3 + ay2 + by + c =
(
x− a

3

)3
+ a

(
x− a

3

)2
+ b
(
x− a

3

)
+ c

=

(
x3 − ax2 +

a2

3
x− a3

33

)
+ a

(
x2 − 2

a

3
x+

a2

32

)
+ b
(
x− a

3

)
+ c

= x3 +

(
a2

3
− 2a2

3
+ b

)
x+

(
−a

3

33
+
a3

32
− ba

3

)
+ c

= x3 +

(
b− a2

3

)
x+

(
2a3

33
− ab

3

)
+ c

= x3 +
1

3

(
3b− a2

)
x+

1

27

(
2a3 − 9ab+ 27c

)
= x3 + px+ q.

Comparing coefficients, we get

p =
1

3

(
3b− a2

)
and q =

1

27

(
2a3 − 9ab+ 27c

)
.

(b) If g(x) has roots α, β and γ, then the discriminant is the determi-
nant of the product  1 1 1

α β γ
α2 β2 γ2

1 α α2

1 β β2

1 γ γ2

 .

On the other hand, comparing coefficients, we have

α + β + γ = 0, βγ + αγ + αβ = p and αβγ = −q.
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Thus if we expand the product above, we get 3 0 α2 + β2 + γ2

0 α2 + β2 + γ2 α3 + β3 + γ3

α2 + β2 + γ2 α3 + β3 + γ3 α4 + β4 + γ4

 .

We turn to computing the sums of powers of the roots. We have already
seen that

α + β + γ = 0.

Squaring both sides we get

0 = α2 + β2 + γ2 + 2(αβ + . . . )

= α2 + β2 + γ2 + 2p.

(Here and elsewhere we adopt the convention that dots represent the
obvious symmetric terms.) Thus

α2 + β2 + γ2 = −2p.

Now multiply both sides by α + β + γ.

0 = α3 + β3 + γ3 + (α2β + . . . ).

On the other hand, multiplying α + β + γ and αβ + . . .

0 = (α2β + . . . ) + 3αβγ.

So
α3 + β3 + γ3 = −3q.

Now for the fourth powers. Consider squaring α2 + β2 + γ2.

4p2 = (α4 + β4 + γ4) + 2(α2β2 + . . . ).

Now square αβ + . . . .

p2 = (α2β2 + . . . ) + 2(α2βγ + . . . ).

Finally multiplying α + β + γ with αβγ we get,

0 = α2βγ + . . . .

Thus
α4 + β4 + γ4 = 2p2.

Putting all this together we want to compute the following determinant∣∣∣∣∣∣
3 0 −2p
0 −2p −3q
−2p −3q 2p2

∣∣∣∣∣∣ = 3

∣∣∣∣−2p −3q
−3q 2p2

∣∣∣∣− 2p

∣∣∣∣ 0 −2p
−2p 0

∣∣∣∣
= −27q2 − 4p3.
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6. We have

x6 − 1 = (x3 − 1)(x3 + 1) = Φ1(x)Φ3(x)Φ2(x)Φ6(x).

Hence

(x+ 1)Φ6(x) = Φ2(x)Φ6(x) = x3 + 1.

Now

x3 + 1 = −(y3 − 1)

= −(y − 1)(y2 + y + 1)

= (x+ 1)(x2 − x+ 1),

where y = −x. Thus

Φ6(x) = x2 − x+ 1.

We have

x10 − 1 = (x5 − 1)(x5 + 1) = Φ1(x)Φ5(x)Φ2(x)Φ10(x).

Hence

(x+ 1)Φ10(x) = Φ2(x)Φ10(x) = x5 + 1.

Now

x5 + 1 = −(y5 − 1)

= −(y − 1)(y4 + y3 + y2 + 1)

= (x+ 1)(x4 − x3 + x2 − x+ 1),

where y = −x. Thus

Φ10(x) = x4 − x3 + x2 − x+ 1.

We have

x30−1 = (x15−1)(x15+1) = (Φ1(x)Φ3(x)Φ5(x)Φ15(x))(Φ10(x)Φ6(x)Φ30(x))

Therefore

(x5 + 1)(x2 − x+ 1)Φ30(x) = Φ2(x)Φ10(x)Φ6(x)Φ30(x) = x15 + 1.

Now

x15 + 1 = −(y3 − 1)

= −(y − 1)(y2 + y + 1)

= (x5 + 1)(x10 − x5 + 1),

where y = (−x)5. Thus

(x2 − x+ 1)Φ30(x) = x10 − x5 + 1.
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After some work one gets

Φ30(x) = x8 + x7 − x5 − x4 − x3 + x+ 1.

7. We want to determine the isomorphism classes of the abelian groups
U7, U20, U60.
If p is a prime then Up are the units in the field Fp so that Up is always
cyclic of order p− 1. Hence U7 is cyclic of order 6, U7 ' Z6.
By the Chinese remainder theorem, U20 = U4 × U5 = Z2 × Z4 and
U60 = U3 × U4 × U5 = Z2 × Z2 × Z4.
8. Let f(x) = x3 − 2x+ 1, considered over Q. Let L/K be a splitting
field.
First observe that all of the roots of f(x) are real. Indeed the derivative
of f(x) is 3x2 − 2, which has two real roots. Thus L ⊂ R.
Now ∆ = −4(−2)3 − 27(1)2 = 5. So L must contain Q(δ), where δ is
a root of x2 − 5 (ie. δ =

√
5). Let G be the Galois group of L/K. It

follows that G is isomorphic to S3. As S3 is solvable, it follows that
f(x) is solvable by radicals.
Clearly the extension M/Q is radical. The problem is that L/M is not.
Indeed suppose it were. Then there would be α ∈ L such that α3 = a.
But then α is a root of x3 − a. As L/K is Galois, then so is L/M and
so x3 − a would split in L.
In particular x3 − 1 would split in L. But then L is not a subset of R,
a contradiction.
9. Suppose that β is a root of

f(x) = xp − x− a,

so that

βp = β + a.

Then

(β + 1)p = βp + 1

= β + a+ 1

= (β + 1) + a.

Thus β + 1 is a root of f(x). So

β, β + 1, β + 2, . . . β + p− 1.

are p distinct roots of f(x). As a polynomial of degree p can have at
most p roots, these are all the roots. In particular L = K(β). Let G
be the Galois group of L/K.
Define a map

f : G −→ Zp
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by sending σ to i, where σ(β) = β+ i. f is injective as β is a generator
of L. Pick σ and τ ∈ G and suppose that σ(β) = β+i and τ(β) = β+j.
Then

(τ ◦ σ)(β) = τ(β + i)

= τ(β) + i

= β + i+ j.

Thus f(τσ) = i + j and so f is also a group homomorphism. As G
is then a subgroup of Zp, there are only two possibilities. Either G is
trivial, which happens if and only if L = K or L/K is cyclic of order
p.
10. Note that the trace is invariant under the action of G, since we
only permute the terms of the sum. It follows that f is indeed a map

f : L −→ K.

Let α and β be two elements of L. Then

f(α + β) =
∑
σ∈G

σ(α + β)

=
∑
σ∈G

σ(α) +
∑
σ∈G

σ(β)

= f(α) + f(β).

Now suppose that α ∈ L and that k ∈ K. Then

f(kα) =
∑
σ∈G

σ(kα)

= k
∑
σ∈G

σ(α)

= kf(α).

Thus f is certainly a K-linear map.
11. We have

σ(α) = σ((p− 1)β + (p− 2)σ(β) + · · ·+ 2σp−3(β) + σp−2(β))

= (p− 1)σ(β) + (p− 2)σ2(β) + · · ·+ 2σp−2(β) + σp−1(β)

= α + f(α)

= α + 1.
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Now consider a = αp − α. We have

σ(a) = σ(αp − α)

= σ(α)p − σ(α)

= (α + 1)p − α− 1

= αp + 1− α− 1

= αp − α
= a.

Thus a is invariant under σ and hence the whole Galois group. But
then a ∈ K. Clearly α is a root of f(x) = xp − x − a and as α /∈ K
and the degree of L/K is prime, L = K(α). But then f(x) must be
irreducible, as the degree of α is equal to the degree of the minimal
polynomial. Thus L/K is a splitting field for f(x), as L/K is normal.
We are done by 7.
12. (i) Recall that as φ runs over G, so does φσ. Thus the numerator
and denominator of the norm of α will be a product of the images of α
under the action of G, only in a different order. Thus numerator and
denominator cancel and the norm of α is one (note that for this result,
we don’t need G to be cyclic).
(ii) Set

β = σ(αp−1)σ2(αp−2) . . . σp−2(α2)σp−1(α).

Just as in 7, it is easy to see that

σ(β) = αβ,

as N(α) = 1. On the other hand β is clearly non-zero and so we are
free to divide through by β.
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