
MODEL ANSWERS TO THE EIGHTH HOMEWORK

1. By assumption

t =
f(x)

g(x)
,

for polynomials f(x) and g(x) ∈ K[x]. As K[x] is a UFD, we may
assume that f(x) and g(x) have no common factors.
Let

p(u) = g(u)t− f(u) ∈ K(t)[u].

Clearly x is a zero of this polynomial. We check that p(u) is irreducible.

p(u) ∈ K[t][u],

and the content of p(u) is one. By Gauss’ Lemma it suffices to show
that p(u) is irreducible in K[t][u]. But p(u) is clearly irreducible in
K[u][t], since p(u) is a linear polynomial in t and the content is one,
by construction.
The degree of p(u), as a polynomial in u, is the maximum degree of
f(u) and g(u). Thus

[K(x) : K(t)] = max(deg f, deg g).

2. First note that the group S3, has the following presentation.
Generators: a, b
Relations: a2 = b3 = e, aba = b2.
Indeed S3 ' D3 and we have already seen that this is a presentation
of D3.
Let σ be the map given as t −→ 1− t and τ the map t −→ 1/t. Then
σ2 and τ 2 are both the identity. Consider a = σ, b = στ . It is easy,
but tedious, to check that a and b satisfy the given relations, so that
G is indeed isomorphic to S3.
A more sophisticated and certainly more satisfying way to proceed is
as follows: Think of σ and τ as acting on K ∪{∞}, in the obvious way
(∞ being defined as 1/0). Then σ and τ permute the three elements
0, 1 and ∞. In fact σ fixes ∞ and switches 0 and 1, and τ switches
0 and ∞ and fixes 1. Thus we get a natural map from G to S3, the
group of permutations of {0, 1,∞}. It suffices to prove that the kernel
is trivial. It is easy to check that in fact G is a subgroup of the group
of all automorphisms of the form

t −→ at+ b

ct+ d
,
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where ad− bc 6= 0.
In fact recall that we may identify a point of K ∪ {∞} with a point
of K2 − {0}/ ∼, where we indentify two points if they lie on the same
line through the origin (∞ then corresponds to the vertical line, a line
of infinite slope), so that

P1 = P(K2) = K ∪ {∞}.
In this way we can associate a matrix(

a b
c d

)
,

to the transformation (again two matrices which are multiples of each
other correspond to the same transformation, so strictly speaking we
have an equivalence class of matrices, that is, an element of PGL(2, K)).
But if a matrix has more than two eigenvectors, then it must be a scalar
matrix and hence correspond to the identity transformation. Thus the
given representation of G is an isomorphism.
Let L = K(t). It suffices to exhibit a rational function

j = j(t) =
f(t)

g(t)
,

of t, where
max(deg f(t), deg g(t)) = 6.

Indeed let M = LG and N = K(j). By (1)

[L : N ] = [K(t) : K(j)] = 6.

As j is invariant, N ⊂ M and by the fundamental theorem of Galois
theory

[L : M ] = 6.

Alternatively note that it is easy to exhibit subfields F of L which
contain M , such that [L : F ] = 2 or [L : F ] = 3.
So how do we exhibit any invariant rational funtions? Let us start with
finding something invariant under σ. Since σ switches t and 1− t, it is
clear that the product t(1− t) is invariant under σ. Further it is clear
that if we set F = K(t(1− t)), then

[L : F ] = 2.

Similarly since τ switches t and 1/t, the sum t+ 1/t is invariant under
τ .
Let φ = σ ◦ τ . Then φ(t) = 1 − 1/t = (t − 1)/t. Now the orbit of G
acting on t is

{ t, 1− t, 1/t, (t− 1)/t, t/(t− 1), 1/(1− t) }.
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The action of φ on this orbit decomposes this orbit into two subsets of
size three,

{ t, (t− 1)/t, 1/(1− t) } and { 1− t, 1/t, t/(t− 1) }.
Thus both

t+ (t− 1)/t+ 1/(t− 1) and (1− t) + 1/t+ t/(t− 1),

are invariant under φ. Since τ obviously switches the two subsets above,
τ fixes

j0 = (t+ (t− 1)/t+ 1/(1− t))((1− t) + 1/t+ t/(t− 1)).

Since G is generated by φ and τ , j0 is fixed by G. As j0 has degree six
on top and four on the bottom, we are done. In fact the function

j(t) = 28 (λ2 − λ+ 1)3

λ2(λ− 1)2
,

is quite famous (it is even called the j-function, λ = t of course). The
strange choice of factor of 2 is actually chosen so that things work out
well when we work over a field of characteristic two.
3. Let G be a finite group. Instead of starting with K and constructing
a Galois extension L with Galois group G (which problem is extemely
hard) the idea is to start with L and construct K. In fact it was proved
in class that if G acts on L (that is G is a group of automorphisms of
L) and K is the fixed field, then L/K is Galois, with Galois group G.
Now any finite group G is a subgroup of Sn, for some n (Cayley’s
Theorem). So it suffices to prove that Sn may be realised as the set of
automorphisms of some field L.
Let K be any field and L = K(x1, x2, . . . , xn), where x1, x2, . . . , xn are
indeterminates over K. Note that L is the field of fractions of the
polynomial ring R = K[x1, x2, . . . , xn]. Given a permutation σ ∈ Sn,
let σ act on the variables x1, x2, . . . , xn in the obvious way,

σ(xi) = xσ(i).

By the universal property of a polynomial ring, there is an induced ring
homomorphism

f : R −→ R,

which acts on the variables as indicated. As f permutes the generators
of R over K, it follows that f is an isomorphism (in fact the inverse
of f is given by the map induced by the inverse of σ). But then,
by the universal property of the field of fractions, there is an induced
automorphism

φ : L −→ L

In this way, we realise Sn as a group of automorphisms of L.
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4. Let G be the Galois group of L/K. Then G has order a power of 2,
so that G is a Sylow 2-subgroup. Thus by Sylow’s Theorems, there is
a tower of subgroups of G, such that each group is normal in the next
and each quotient has order two. By the Fundamental Theorem, this
gives us a sequence of subfields, each of which is quadratic over the
previous field. As the characteristic is not two, we are done.
5. (a) The group Z2 × Z2, as in question 6.
(b) ω is a root of x2 + x+ 1, which we have already seen is irreducible.
Thus the Galois group is Z2.
6. (a) We first check that

x4 − 3x2 + 4

is irreducible. By Gauss it is enough to check this over Z. If there were
a linear factor, we would have an integer root, necessarily a divisor of
4. But ±1, ±2 and ±4 are not roots of this polynomial. The only other
possibility is that we can factor as

x4 − 3x2 + 4 = (x2 + ax+ b)(x2 + cx+ d),

where a, b, c and d are all integers. Looking at the coefficient of x3, we
have a = −c and looking at the constant coefficient, we have bd = 4.
Looking at the linear term, we have b = d, so that b = d = ±2. Looking
at the quadratic term, we have

−3 = b+ d− a2,
clearly impossible.
Now consider

y2 − 3y + 4.

This has roots
3±
√
−7

2
.

Thus the four roots of x2 − 3x + 4 are the two pairs of square roots.
Call α and β one of each. I claim that, up to sign, αβ = 2. One way
to see this is to calculate directly

αβ =
((3 +

√
−7)(3−

√
−7))1/2

2

=
(9 + 7)1/2

2
= 2.

Here is another. Suppose that I have a monic polynomial of degree n,
which splits as

f(x) = xn + an−1x
n−1 + . . . a1x+ a0 = (x− α1)(x− α2) . . . (x− αn),
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where α1, α2, . . . , αn are the roots of f(x). Then I can compare terms
and identify the coefficients by multiplying out. In particular the con-
stant term is the product of the roots,

a0 = (−1)nα1α2 . . . αn.

In our case the roots are ±α and ±β so that

(αβ)2 = 4.

Let L = Q(α). Then L/K has degree four. But β = 4/α ∈ L, so
that f(x) splits in L. Hence the Galois group has order four and it
is either Z4 or Z2 × Z2. As α and β are roots of the same irreducible
polynomial, there is an automorphism which carries one to the other.
The same automorphism must carry −α to −β. Similarly there is an
automorphism that carries α to −α and β to −β. Thus there are two
elements of order two, and we must have Z2 × Z2.
(b) and (d).

x4 − 3x2 + 4 = x4 + x2

= x2(x2 + 1)

= (x(x+ 1))2.

Thus this polynomial splits in F2 and the Galois group is trivial.
(c)

x4 − 3x2 + 4 = x4 + 1.

Now x4 +1 does not have any roots over F3. Suppose it were reducible.
Then

x4 + 1 = (x2 + ax+ b)(x2 + cx+ d).

Looking at the term of degree three, we have

0 = a+ c,

so that c = −a. Looking at the constant term we have bd = 1, so that
b = d. Thus

x4 + 1 = (x2 + ax+ b)(x2 − ax+ b).

Now consider the quadratic term. We have

0 = 2b− a2.

Thus a2 = 2b. Thus b = 2 and a = 1. Thus x4 + 1 is the product of
two quadratics. The splitting field of either polynomial is a quadratic
extension. As their is only one quadratic extension, namely F9/F3, it
follows that both quadratics split in the same field extension. Thus the
Galois group is Z2.
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7. The only non-trivial cases are 3(a) and 4(a). In the first case, there
are three proper subgroups, all normal, corresponding to the three
intermediate fields Q(

√
2), Q(

√
5) and Q(

√
10).

The second case is almost identical. One intermediate field is obvious

Q(α2) = Q(
√
−7),

which is the fixed field of the automorphism that sends α to −α.
Consider the automorphism that switches α and β. Obviously αβ and
α + β are invariant. The first is unfortunately equal to 2, so we get
nothing from this. But α + β certainly does not look like a rational
number, so it should generate our fixed field.
Now to compute α + β look at the coefficient of x2,

x4 − 3x2 + 4 = (x− α)(x− β)(x+ α)(x+ β) = (x2 − α2)(x− β2).

Thus
−3 = −α2 − β2,

so that
α2 + β2 = 3.

Now expand

(α + β)2 = α2 + 2αβ + β2

= (α2 + β2) + 2(αβ)

= 3 + 2 · 2
= 7.

Thus
Q(α + β) = Q(

√
7).

The final fixed field is

Q(i) = Q(
√

7
√
−7) = Q(α− β) or compute as above.

Challenge Problems: 8. We proceed in a similar fashion to question
2. First note that any symmetry of a tetrahedron is determined by
its action on the vertices, of which there are four. So the group of
symmetries of a tetrahedron is a subgroup of S4. On the other hand,
the action is certainly transitive and the stabiliser of a vertex has order
three. Thus the group of symmetries has order 12 = 3 · 4 and it must
in fact be A4 ⊂ S4.
We are indeed given 12 symmetries. It suffices then to check we get
the right group.
The elegant way to proceed is to think again of G acting on points of
K ∪ {∞}. Consider the six points {0,±1,±i,∞}. It is easy to check
that the given automorphisms permute these points. We have already
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seen that any element of G that fixes these points (or indeed any three
of them) must be the identity, so that G is a subgroup of S6.
Now we want G to act on 4 things. If we think of these points as being
points of the Riemann sphere, with the south pole corresponding to
zero, the north pole to infinity, and the equator to the unit circle, then
these points correspond to the points of an octahedron. There are then
eight faces (all triangles) so that there are four sets of opposite faces.
It follows then that we get a representation of G into S4, which is easily
seen to be faithful (that is, any element of G which fixes all four pairs
of faces, must be the identity). The image of G is then a subgroup of
order 12 and so it is automatically A4.
9. Note that L/K is the splitting field of

f(x) = (x2 − p1)(x2 − p2)(x2 − p3) . . . (x2 − pn).

Thus L/K is Galois. Moreover, by repeated adjoining square roots and
applying the Tower Law, it follows that

[L : K] ≤ 2n.

Thus it suffices to prove that the Galois group G has order at least 2n.
By Eisenstein, x2−p is irreducible, where p is any prime. Suppose that
α ∈ L is a root of x2− p, where p = pi. Let M = K(α). Then M/K is
quadratic and we may find π : M −→ M sending α to −α. Now L/M
is a splitting field for f(x)/(x2 − p), so that there is an automorphism
φ = φi of L that fixes αj, j 6= i and sends αi to −αi, so that φ extends
π.
The group H generated by φ1, φ2, . . . , φn is easily seen to have at least
2n elements. Note that we have also proved that H = G and that G is
isomorphic to a product of n copies of the cyclic group of order two.
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