
MODEL ANSWERS TO THE SEVENTH HOMEWORK

1. First we check that this map is well-defined. We have to check that
if

f1
g1

=
f2
g2
,

then
(Df1 · g1 − f1 ·Dg1)

g21
=

(Df2 · g2 − f2 ·Dg2)
g22

,

which is an easy check. Note that

D(f/1) =
(Df · 1− f ·D1)

12
= D(f),

so this does indeed extend the formal derivative.
Now observe that the formal derivative, which is a function

D : K(t) −→ K(t)

is linear in the numerator, that is the function

K[t] −→ K(t)

which sends f to

(Df · g − f ·Dg)

g2
,

is linear. This is clear, as it is the sum of

Df

g
and − fDg

g2
,

the composition of two linear functions is linear and multiplying by a
fixed scalar is linear. Now

D(f1/g1 + f2/g2) = D(f1g2/(g1g2) + f1g1/(g1g2)),

and so the formal derivative is linear.
Now we turn to proving Leibniz’s rule, that is

D(uv) = D(u)v + uD(v),

where u and v are rational functions. Suppose that u = f/g and
v = h/k. Then the argument to the LHS is (fh)/(gk) and so the LHS
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is

D(uv) =
(D(fh) · gk − fh ·D(gk))

g2k2

=
(hgkDf + fgkDh− fhkDg − fhgDk)

g2k2

Now consider the RHS,

D(u)v + uD(v) =
h (Df · g − f ·Dg)

kg2
+
f (Dh · k − h ·Dk)

gk2

=
(hkDf · g − hkf ·Dg + fgDh · k − fgh ·Dk)

g2k2
.

As both are the same, the result follows.
2. First note that any polynomial over a field of characteristic zero
is separable. Secondly, we proved in class that a finite extension of
a finite field is separable, so that every polynomial over a finite field
is separable. (Indeed the minimum polynomial of any element must
divide xq − x for some q, and this has no repeated roots). So every
polynomial listed is automatically separable.
3. Note that to prove that a finite extension is normal, it suffices to
prove that it is the splitting field of some polynomial.
(1) Note that Q(

√
−5) is a splitting field for x2− 5, so the extension is

normal.
(2) The polynomial x7−5 has a root in Q(α), since α is a root. However
the other six roots of this polynomial are not real, so the polynomial
does not split in this field. It follows that this extension is not normal.
(3) Not normal, for the same reason as in (3).
4. Let L/K be an extension of degree two. Let α ∈ L. The minimum
polynomial of α has degree one or two, so that α is a root of a monic
polynomial of degree two with coefficients in K. Any such polynomial
has the form

f(x) = x2 + ax+ b.

In a splitting field, we have

x2 + ax+ b = (x− α)(x− β).

Multipyling out, we have

−a = α + β,

so that β = −a− α ∈ L. But then f(x) splits in L.
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5. M/K is separable by definition. Suppose that α is in L, let f(x)
be the minimum polynomial over M and let g(x) be the minimum
polynomial over K. Then g(x) is separable, by definition and f(x)
divides g(x). It follows then that f(x) has no repeated roots.
6. No. Let α be the positive square root of 2 and let β be the positive
real fourth of 2. Let L = Q(β), M = Q(α) and K = Q. Then M/K
is quadratic, β2 = α and so M ⊂ L and L/M is quadratic. Thus L/M
and M/K are normal extensions. However L/K is not normal. For
example, β is a root of x4 − 2, but x4 − 2 does not split in L.
7. Let L = F(s, t), where F is any finite field of characteristic p, and
let K = F(sp, tp) = F(u, v). Then sp = u and tp = v, so that s is a root
of xp − u and t is a root of xp − v. It follows that L/K is finite. As s
and t are independent variables, it is clear that L/K is an extension of
degree p2, by the Tower Law.
Let α = s+ kt, where k is any element of K. Then

αp = (s+ kt)p

= sp + kptp

= u+ kpv.

It follows that α is a root of the polynomial xp − (u + kpv). Thus
K(α) 6= L, as α has degree p over K. By the proof of (7.23), if L/K
were primitive then for some k, α would generate L, a contradiction,
as L/K does not have degree p.
8. Consider the polynomial x2 − α ∈ L(α)[x]. It suffices to prove that
this polynomial is irreducible. By Gauss this is the same as saying that
x2 − α ∈ L[α][x] = L[x][α] is irreducible, which is clear, as this is a
linear polynomial in α.
9. Let M consist of all elements α of L such that the minimum poly-
nomial of α splits in L. Suppose that Σ/K is a normal extension. Pick
α ∈ Σ. Then the minimum polynomial of α splits in Σ, so that it
certainly splits in L. Hence α ∈ M and so Σ ⊂ M . In particular
K ⊂M ⊂ L, as x− α ∈ K[x] splits in L, whenever α ∈ K.
We want to prove that M is a subfield of L. Given α and β in M , it
suffices to prove that K(α, β) ⊂ M . Let f(x) be the product of the
minimum polynomials of α and β. Then f(x) splits in L as α and β
belong to M . Let Σ ⊂ M be a splitting field for f(x). Then Σ/K is
normal as it is a splitting field. Thus K(α, β) ⊂ Σ ⊂M . Thus M is a
field. It is clear that M/K is normal.
10. Pick l ∈M = K(M1,M2). We want to prove the minimum polyno-
mial of l splits in L. Now there exists α1, α2, . . . , αm and β1, β2, . . . , βn
such that l ∈ M = K(α1, α2, . . . , αm, β1, β2, . . . , βn). As αi ∈ M1,
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the minimum polynomial of αi splits in M1. Similarly the minimum
polynomial of βj splits in M2. Hence the product of the minimum
polynomials splits in M . Let Σ ⊂ L be the corresponding splitting
field. Then Σ/K is normal and by construction l ∈ Σ. But then, as
the minimum polynomial of l splits in Σ, it certainly splits in M . Thus
M/K is normal.
Now let M = M1 ∩M2. Let α ∈ M and let m(x) be the minimum
polynomial of α. As m splits in M1, all the roots of m(x) are contained
in M1. Similarly the same roots are contained in M2. But then m(x)
splits in M and so M/K is normal.
11. Clearly it suffices to count the number of monic irreducible poly-
nomials of degree d and then multiply the answer by q−1, the number
of non-zero scalars.
Suppose that m(x) is a monic polynomial of degree d. Then m(x) has
a root in a field extension of degree d. But all fields of cardinality qd

are isomorphic. Thus every polynomial of degree d splits in the same
field F of cardinality qd.
Note that F is separable over Fq. Therefore a monic polynomial m(x)
of degree d has d distinct roots in F and each of these d roots has
m(x) as minimum polynomial. So we just need to count the number
of possible roots and divide by d.
Suppose α ∈ F and let m(x) be its minimum polynomial. If m(x) ha
degree d then Fq(α) ⊂ F has degree d over Fq, so that Fq(α) = F. If
m(x) has smaller degree then Fq(α) 6= F. Thus m(x) has degree d if and
only if α lives in no smaller field. The intermediary fields correspond
to divisors e of d. There is one such for each divisor; it is the splitting
field of xq

e − x. By inclusion-exclusion the number of polynomials of
degree d is

(q − 1)

d

(
qd −

∑
e

qe +
∑
f

qf − . . .

)
,

where the first sum ranges over all e such that d/e is a prime, the
second sum ranges over all f such that d/f is a product of two distinct
primes, and so on.
12. γ is clearly a root of the polynomial

f(x) = (x2 − 2)2 − 2 = x4 − 4x2 + 2.

By Eisenstein, applied with p = 2, f(x) is irreducible. Thus L =
Q(γ)/Q = K has degree four. Now the four roots of f(x), in C are

±
√

(2±
√

2).

Now clearly L contains
√

2 = γ2 − 2.
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We have

γγ′ =

(√
(2 +

√
2)

)(√
(2−

√
2)

)
=

√
(2 +

√
2)(2−

√
2)

=
√

4− 2

=
√

2 ∈ L.

As L is a field, it follows that
√

(2−
√

2) ∈ L, and so f(x) splits in

L. Thus L/K is a splitting field for f(x) and so L/K is Galois, as all
polynomials over a field of characteristic zero are separable.
In particular the Galois group must have order four and there are only
two groups of order 4, the cyclic group of order four Z4 and the product
of two cyclic groups of order two Z2 × Z2.
Consider M = Q(

√
2). We have L/M/K. As x2− 2 is irreducible over

Q, there is an automorphism of M which switches
√

2 and −
√

2. We
may extend this to an automorphism of L, in two ways. Pick one and
call it σ. Then σ is determined by its action on anyone of the roots
of f(x), and it must send a root to another root, that is σ induces a
permutation of the roots. Suppose that σ(γ) = −γ. Then σ(γ′) = −γ′
and as γγ′ =

√
2, σ fixes

√
2. But this contradicts the fact that σ

extends π.
Thus σ(γ) = γ′ (possibly switching σ) and by the same token as before
σ(γ′) = −γ. Thus σ2 is not the identity and so the Galois group is
cyclic, generated by σ. It follows, by the Galois correspondence, that
M is the only proper intermediary field, as G has only one proper
subgroup.
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