
MODEL ANSWERS TO THE SIXTH HOMEWORK

1. [Q̄ : Q] = ∞. There are many ways to see this; for example
xn− 2 ∈ Q[x] is irreducible, by Eisenstein. If α is a root of xn− 2 then
[Q(α) : Q] = n and so [Q̄ : Q] ≥ n by the tower law.
2. Note first that G is naturally a subset of the set of all functions
from L to L. The set of all such functions forms a group, where the
multiplication is defined as composition of functions.
Hence it suffices to prove that G is closed under multiplication and
inverses, that is, that the composition and inverse of an automorphism
that fixes K, is an automorphism that fixes K. But the composition
and inverse of a function that fixes K certainly fixes K and it is not
hard to check that composition and inverse of an automorphism is an
automorphism.
3. Clearly H is a subset of G. On the other hand H = Gal(L/M), so
that H is also a group. Thus H is a subgroup.
4. As G fixes K, clearly K ⊂ M ⊂ L, and so it suffices to prove
that M is closed under addition, additive inverses, multiplication and
multiplicative inverses. We check closure under addition; the other
cases are just as straightforward. Suppose that m and n ∈ M . We
have to check that m+ n is fixed by every element of H. Pick φ ∈ H.
Then φ(m) = m and φ(n) = n.

φ(m+ n) = φ(m) + φ(n)

= m+ n.

As φ was arbitrary, m+ n ∈M , as required.
5. Suppose that m ∈ LK . Then φ(m) = m, for every φ ∈ K. As
H ⊂ K, it follows that φ(m) = m, for every φ ∈ H. Thus m ∈ LH and
so LK ⊂ LH .
Suppose that φ ∈ Gal(L/N). Then φ(n) = n, for every n ∈ N . As
M ⊂ N , it follows that φ(m) = m, for every m ∈ M . Thus φ ∈
Gal(L/M) and so Gal(L/N) ⊂ Gal(L/M).
6. Pick φ ∈ H. Then φ(m) = m, for every m ∈ LH = M . Thus
φ ∈ Gal(L/M) = K. Hence H ⊂ K.
7. Pick m ∈M . Then φ(m) = m, for all φ ∈ Gal(L/M). Thus m ∈ N
and M ⊂ N .
8. First we check that [L : Q] = 8. We already know that

[Q(
√

2,
√

3) : Q] = 4.
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By the tower law, it suffices to check that

[Q(
√

2,
√

3,
√

5) : Q(
√

2,
√

3)] = 2.

For this, we just need to check that
√

5 /∈ Q(
√

2,
√

3).

A basis for Q(
√

2,
√

3)/Q is given by 1,
√

2,
√

3,
√

6. We just need to
check that no linear combination is a root of x2 − 5. Now

(a+b
√

2+c
√

3+d
√

6)2 = (a2+2b2+3c2+6d2)+2((ab+3cd)
√

2+(ac+2bd)
√

3+(ad+bc)
√

6).

If this is equal to 5 we have

a2+2b2+3c2+6d2 = 5 ab+3cd = 0 ac+2bd = 0 and ad+bc = 0.

Consider the last three equations. If one of the variables is zero then
at least two of the variables are zero. But the equation

mx2 = 5

has no rational solutions for m ∈ {1, 2, 3, 6}. If none of a, b, c and d is
zero then the last equation gives us

a = −bc
d
.

If we substitute into the third equation we get

bc2 = 2bd2.

Cancelling we get
c2 = 2d2,

which is not possible.
Thus [L : Q] = 8. Thus the degree of an intermediary field M is two
or four. Note that

Q(
√

2), Q(
√

3), Q(
√

5), Q(
√

6), Q(
√

10), Q(
√

15), Q(
√

30),

are all intermediary fields of degree two, as each field is generated by
an element α, whose square is rational. Conversely, we have seen in
class that if M/Q has degree two, then there is an α ∈ M such that
M = Q(α), where α2 ∈ Q. Now, by repeated application of the tower
law, a basis for L/Q is given as

1,
√

2,
√

3,
√

5,
√

6,
√

10,
√

15,
√

30.

Thus a general element α of L is given by

a+ b
√

2 + c
√

3 + d
√

5 + e
√

6 + f
√

10 + g
√

15 + h
√

30,

for some rational numbers a, b, c, d, e, f , g and h. It is easy to see that
the only way the square is rational is if there are no cross-terms, so
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that all but one coefficient is in fact zero. Thus the list above certainly
exhausts all possible quadratic intermediary fields.
Now consider classifying all quartic extensions. Again it is easy to write
down quite a few examples of quartic extensions

Q(
√

2,
√

3), Q(
√

2,
√

15), Q(
√

2,
√

5), Q(
√

3,
√

5),Q(
√

3,
√

10), Q(
√

5,
√

6), Q(
√

5,
√

30).

Suppose thatM is a quartic extension that contains
√

2. ThenM/Q(
√

2)
is quadratic. Arguing as before, it follows that M is generated over
Q(
√

2) be an element α whose square lies in Q(
√

2). Now a basis for
L/Q(

√
2) is given by 1,

√
3,
√

5 and
√

15. Thus

α = a+ b
√

3 + c
√

5 + d
√

15.

As before it is easy to see that the condition that α2 lies in Q(
√

2)
implies that all cross-terms vanish, so that all but one coefficient is
zero. Arguing similarly for the other quadratic extensions, it follows
that the list given above exhausts all quartic extensions provided we
can show that a quartic extension must contain a quadratic one.
Now we turn to the problem of computing the Galois group and all of
its subgroups. Let φ be an automorphism of L. Then φ is determined
by its action on the generators of L. Now φ(

√
2) must a root of x2− 2,

so that

φ(
√

2) = ±
√

2, φ(
√

3) = ±
√

3 and φ(
√

5) = ±
√

5.

In particular G has at most eight elements. Now we turn to the problem
of showing that there is an automorphism φ√

2 which switches the sign

of
√

2 and fixes the other two signs. Note first that we may find

σ : Q(
√

2) −→ Q(
√

2),

such that σ(a + b
√

2) = a − b
√

2 Indeed
√

2 and −
√

2 are both roots
of the same irreducible polynomial. Now the extension L/Q(

√
2) is

a splitting field for (x2 − 3)(x2 − 5). It follows that we may find an
extension φ√

2 of σ that fixes
√

3 and
√

5.
Similarly we may find φ√

3 and φ√
5. Let H be the group they generate

inside G. Note that each of these elements has degree two and that
they commute with each other. It follows that H is an abelian group,
isomorphic to Z2 ×Z2 ×Z2. As H and G both have eight elements, in
fact H = G.
Thus G has seven subgroups of order two, given by the seven non-zero
elements of G, each of which has order two. To find all subgroups of
order four is a little more involved. The trick is to identify G with
F3
2 and to realise that a subgroup of order four corresponds to a linear

subspace of dimension two. But a plane in a three dimensional space
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is the same as a line in the dual space, and so there are seven planes
as well, that is, seven subgroups of order four.
Let M be an intermediary field of order 4. Let H = Gal(L/M). Then
H is a subgroup of G. Now L/M is quadratic and so there is a β ∈ L
such that L = M(β), where β2 ∈ M . Thus the order of H is two (one
can either change the sign of β or not). It follows that M ⊂ LH . By
inspection, LH is always a quartic extension of K, and so M = LH .
But then there are at most seven quartic extensions.
We note that the lattice of subgroups and intermediary fields are the
same (but with an upside-down identification).
9.

t3 − 1 = (t− 1)(t2 + t+ 1),

and t2 + t+ 1 is irreducible. Thus it suffices to find a splitting field for
t2 + t+ 1. Let ω be a root of t2 + t+ 1. Then ω3 = 1 and so ω2 is the
other root,

(ω2)3 = (ω3)2

= 12

= 1.

Thus Q(ω) is in fact a splitting field for t3 − 1. The degree of the
extension is two. Of course we may always represent ω as exp(2πi/3).
Consider t4 + 5t2 + 6. This factors as

(t2 + 2)(t2 + 3),

so that Q(
√
−2,
√
−3). Just as the case with

√
2,
√

3, the degree of
this field extension is 4.
Finally consider t6 − 8. Suppose that ω is a primitive sixth root of
unity, and let α be a positive sixth root of 8, that is a positive square
root of 2. Then the roots of t6 − 8 are ωiα, where i ranges from 0 up
to 5. Thus a splitting field is given as Q(α, ω). Now ω is a cube root
of −1. Put differently,

x6 − 1 = (x3 − 1)(x3 + 1),

and the roots of the first factor are cube roots of 1, so that ω is a root
of the second factor. It is easy to check that x3 + 1 is irreducible over
Q. Thus ω has degree three over Q. On the other hand

√
2 has degree

two over Q. As 2 and 3 are coprime the degree of the splitting field is
6.
10. Note first that any two splitting fields define isomorphic extensions
of K, so that we are free to go through the construction given in class
and check the result for the splitting field so constructed.
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We proceed by induction on n. If n = 1, then f is linear, f splits in L
and so L = K. Now suppose that n > 1. Suppose that f is reducible,
so that f = gh, where g and h have degree a and b respectively. Then
n = a + b. Let M/K be a splitting field for g over K and let L/M
be a splitting field for h over M . Then L/K is a splitting field for the
product f . By induction

[M : K]|a! and [L : M ]|b!.
Thus

[L : K] = [L : M ][M : K]|a!b!

and as a!b! divides (a+ b)! = n!, we are done in this case.
Finally suppose that f is irreducible. We first adjoin a root α of f .
Thus we get a field extension K(α)/K, which has degree n, as f is
irreducible. Now

f(x) = (x− α)g(x),

where g(x) ∈ K(α)[x]. As the degree of g(x) is n− 1, by induction

[L : K(α)]|(n− 1)!.

Arguing as before, the result follows.
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