MODEL ANSWERS TO THE FIFTH HOMEWORK

1. If $M \simeq F \oplus T$ is the decomposition of M into its free and torsion part then $F \simeq R^{r}$ and the rank r is the dimension of the K-vector space $M \underset{R}{\otimes} K$. Let s be the rank of N. The rank of $M \oplus N$ is

$$
\begin{aligned}
\operatorname{dim}_{K}((M \oplus N) \underset{R}{\otimes} K) & =\operatorname{dim}_{K}(M \underset{R}{\otimes} K \oplus N \underset{R}{\otimes} K) \\
& =\operatorname{dim}_{K}(M \underset{R}{\otimes} K)+\operatorname{dim}_{K}\left(N{\underset{R}{*}}_{\otimes}(M)\right. \\
& =r+s .
\end{aligned}
$$

2. A rational canonical form determines a partition of $5, p_{1}, p_{2}, \ldots, p_{k}$. Since d_{i} divides d_{i+1} we have that

$$
p_{1} \leq p_{2} \leq p_{3} \ldots \quad \text { and } \quad \sum p_{i}=5 .
$$

The possible partition types are
$1+1+1+1+1 ; \quad 1+1+1+2 ; \quad 1+1+3 ; \quad 1+2+2 ; \quad 1+4 ; \quad 2+3 ; \quad 5$.
For each one we count the number of different rational canonical forms with the given partition type.
In the first case, $d_{1}=d_{2}=d_{3}=d_{4}=d_{5}$ has degree one; $d_{1}=x$ or $x+1$ and we either have the zero matrix or the identity matrix.
In the second case $d_{1}=d_{2}=d_{3}$ has degree one and d_{4} has degree two. There are two possibilities for d_{1} and two possibilities for d_{4} / d_{1}. Thus there are four different matrices.
In the third case $d_{1}=d_{2}$ has degree one and d_{3} / d_{1} has degree two. There are two possibilities for d_{1} and four for d_{3} / d_{1}. Thus there are eight different matrices.
In the fourth case d_{1} has degree one, d_{2} / d_{1} has degree one and $d_{2}=$ d_{3}. There are 2 possibilities for d_{1} and two for d_{2} / d_{1}. There are four different matrices.
In the fifth case d_{1} has degree one and d_{2} / d_{1} has degree three. There are 2 possibilities for d_{1} and eight for d_{2} / d_{1}. There are sixteen different matrices.
In the sixth case d_{1} has degree 2 and d_{2} / d_{1} has degree one. There are four possibilities for d_{2} and two for d_{2} / d_{1}. There are eight different matrices.
In this seventh case d_{1} has degree five. There are 32 such matrices.

In total there are

$$
2+4+8+4+16+8+32=74
$$

rational canonical forms.
3. The matrix

$$
\left(\begin{array}{llll}
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0
\end{array}\right)
$$

is in rational canonical form. Both the minimal and characteristic polynomials are therefore $x^{4}-1$, up to sign, so that the eigenvalues are ± 1 and $\pm i$.
4. The vector $(0,1,-1)$ is an eigenvector with eigenvalue zero, and the vector $(1,0,1)$ is an eigenvector with eigenvalue -1 . The sum of the eigenvalues is the trace, which is 0 , so that there must be an eigenvector with eigenvalue 1 . It follows that the minimum polynomial is $x(x-1)(x+1)=x^{3}-x$.
The rational canonical form is

$$
\left(\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right) .
$$

5. Find the Jordan canonical form of

$$
\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 0 & -2 \\
0 & 1 & 3
\end{array}\right) .
$$

As this matrix has block form with a 1×1 matrix at the top left, it obviously suffices to put the 2×2 submatrix

$$
\left(\begin{array}{cc}
0 & -2 \\
1 & 3
\end{array}\right)
$$

into Jordan canonical form. The last matrix has characteristic polynomial

$$
\left|\begin{array}{cc}
-x & -2 \\
1 & 3-x
\end{array}\right|=x(x-3)+2=x^{2}-3 x+2=(x-2)(x-1) .
$$

This has eigenvalues 1 and 2. It follows that the original matrix has eigenvalues 1,1 and 2 . As there are two independent eigenvectors with eigenvalue 1, it follows that the Jordan canonical form is

$$
\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 2
\end{array}\right) .
$$

