MODEL ANSWERS TO THE FOURTH HOMEWORK

1. (i) We first try to define a map left to right. Since finite direct sums
are the same as direct products, we just have to define a map to each
factor. By the universal property of the wedge product we just have to
define a map from the Cartesian product of M & N with itself d times
which is multilinear and alternating:

(M@ML%AM%AN

To define this map, we work by analogy with the binomial theorem.
If we expand (a + b)¢ using the distributive rule, then we terms of the
form a't’ by taking a from i factors and b from the rest. The one
difference for the wedge product is we need to keep track of sign. We
send a d-tuple

(mg, ni)?ﬂ

E 6[7Jm[®nj.

1,J

to

The sum runs over all partitions (I, J) of the integers into two pieces
of sizes 7 and j. €7 is the sign of the permutation given by I and
J (in other words, imagine arranging a deck of cards, first put down
the elements of I and then the elements of .J, in increasing order). m;
denotes the wedge product of m;, as ¢ runs over the elements of I.

It is not hard to check that this is multilinear and alternating.

To define a map right to left, we proceed in a similar fashion. It suffices
to define a bilinear map

/\Mx/j\N—>/\(M@N).

We send (my,n;) to €7,7(Ma,,0) A (May, 0) A=+ A (0,1,).
To finish it suffices to check that the composition from

i j i J
AM%AN—%AM%AM

is + times the identity.



(ii) By the universal property of the tensor product, an element of
Hompg(M ® N, P) is the same as a bilinear map
R

M x N — P.

If we fix m € M this gives us an R-linear map N — P, an element
of Hompg(N, P). Varying m gives us a function

M — Hompg(N, P),

which it is not hard to see is R-linear. Thus we get an element of
Hompg(M,Homg(N, P)). It is straightforward to check that this as-
signment is R-linear.

Now suppose that we have an element of Homg (M, Homg(N, P)). For
every m € M we get an R-linear map N — P. This defines a func-
tion M x N — P which is bilinear, so that we get an element of
Hompg(M % N, P). Tt is not hard to see that this is the inverse of the

first assignment, so that we get an isomorphism:

Hompg(M ® N, P) ~ Homg(M, Homg(N, P)).
R

2. We first construct a map. By the universal property of the tensor
product, we just need to exhibit a bilinear map

L:V*xW — Homp(V,W).

Given a pair (¢, w) send this to the linear function ¥ (v) = ¢(v)w. It
is not hard to check that this map is bilinear.

Suppose we are given an element of V* @ W.
F

Z¢i ® w,

where ¢; € V* is a linear functional on V' and w; € W. We send this
to the linear map

vV — W given by Y(v) = Z oi(v)w;.

The image of 1 is contained in the span of the vectors wy, ws, ..., wg
so that ¢ € Hom”,(V, W).
Suppose that Wy and W; are complimentary linear subspaces. Then

F F F
and
Homp(V, W) ~ Hompg(V, W,) & Homp(V, Wy).

Moreover L respects this decomposition.
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Now we check that L is injective and surjective. Suppose first that W
is finite dimensional. In this case W ~ F", for some r. As
VW~V"® F"
F F
~(V*® F)"
(V" & F)
~ (V*)T,
and
Hom?,(V, W) = Homp(V, W)
~ Homp(V, F")
~ (Homp(V, F))"
~ (V7'
it is clear that L is an isomorphism in this case.

Now consider the general case. If ¢ € Hom?(\/, W) then we want to
construct an element of V* @ W mapping to ¢. Let Wy be the image
F

of ¥ and let ¥y: V. — W, be the obvious factorisation of V. — W.
Then we may find oy € V* ® W, such that aq is sent to 1y. Let «
F

be the image of ap in V* @ W. It is clear that L(a) = ¢. Thus L is
F

surjective.
Now suppose that we have an element o € V* @ W of the kernel of L.
F

Then
o= Z O; ® w.
Let Wy be the span of wy, ws, ..., w,. Then we may find oy € V*® W,
F

mapping to « such that the image of oy in Hompg(V, Wy) is zero. As
Wy is finite dimensional, it follows that oy is zero.

As W is a vector space, we may find W; a complimentary linear sub-
space such that W = Wy + W;. As L respects this decomposition, it
follows that « is zero so that it must be zero to begin with.

3. First suppose that

M—N-—P —0,

is right exact. Call the first map f: M — N and the second map
g: N — P. Note that Im f C Ker g is equivalent to go f = 0.

Let @ be any R-module. Suppose that « € Hompg(P,Q). Then the
image of a is § = g*(a) = o g. If a is non-zero then we may find
p € P such that a(p) # 0. As g is surjective we may find n € N such
that g(n) = p. In this case f(n) = a(g(n)) = a(p) # 0. Thus g # 0

and so we have exactness on the left.
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Now consider the image v of a in Homgr(M,Q). v = a o (go f).
But g o f = 0 by exactness, so that v = 0. Finally suppose that
f € Hompg(N, Q) and the image of 3 is zero, so that So f = 0. Then
is zero on the image of f, so that 3 is zero on the kernel of g. By the
universal property of the quotient, it follows that g induces a morphism
a: M — @ such that = a o g. Thus 3 is the image of a and so we
have a left exact sequence.

Now suppose that

0 — Hompg(P, Q) — Homg(N, Q) — Homp(M, Q),

is left exact for every R-module Q).

Suppose we take @ = M and v € Hompg(M, M) to be the identity.
Then we can find € Hompg(N, Q) such that v = S o f. As 7 is
injective, it follows that f is injective.

Now take () = P and let a be the identity. Then go f o a = 0 so that
go f = 0. Finally take @ = N/Im f and let 5 be the canonical map
N — Q. Then the image of § in Homg(M, Q) is zero. So we may
find P — ) mapping to 3, so that § = g o . This is only possible
if the image of f contains the kernel of g. Thus the first seqeunce is
exact.

4. Suppose that the first sequence is left exact. Let @ be R-module.
If « € Hompg(Q, M) is non-zero then we may find ¢ € @) such that

a(q) #0. If = foathen 5(q) = f(a(q)) # 0 as f is injective.
If 7 is the image of o in Hompg(Q, P) then

v=go(fea)=(gof)oa=0,

as go f = 0. If § € Homg(Q,N) and g o § = 0 then the image of
lands in the kernel of g. As this is equal to the image of f, the image
of # must land in the image of f. As f defines an isomorphism with
its image, we can find & € Hompg(Q, M) such that foa = /3. Thus the
second sequence is always exact.

Now suppose that the second sequence is always left exact. If ) = R
then

0 — Hompg(R, M) — Hompg(R, N) — Hompg(R, P),
is exact. On the other hand, the map
M — Hompg(R, M),

which sends m to the R-linear map » — rm is an isomorphism. Thus
we recover the first exact sequence, which is then automatically left

exact.
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5. Suppose that the first sequence is right exact. If ) is an R-module
and @)y is any other R-module then let

Q1 = Hompg(Q, Qo).
It follows by (3) that the sequence
0 — Hompg(P, Q) — Hompg(N, Q1) — Hompg(M, Q1),
is always left exact. By (1) (ii) it follows that
0 — Hompg(P %) Q, Qo) — Hompg(N % Q, Qo) — Hompg(M % Q,Qo),

is always left exact. By (3) it follows that
MQ—NQ—P —D0.
R R R
is right exact for all R-modules Q).
Now suppose that the first sequence is right exact. If we take @ = R
then we recover the first exact sequence, since tensoring with R has no

effect.
6. The key exact sequence is the short exact sequence

0—72Z—7Z— Zos — 0,

of Z-modules, where the first map is multiplication by 2. We take
Q) = Zs. First we look at maps into (). Since

HOmz(Z, Zg) = HOIl'lz(ZQ, ZQ) = Zg,
we get the sequence
0 — Zog —> 7oy — 7y —> 0.

This is surely not a short exact sequence.
Now suppose we take ) = Zs and look at maps from (). Since

Homz(Zg, Z) = 0,
we get the sequence
0 —0—0—72Zy —0.

This is surely not a short exact sequence.
Finally suppose we tensor by () = Zs. Then we get the first sequence

0 — Zo —> L9 — Ly — 0,

which is still not a short exact sequence.
Challenge Problem: 7. The key point is to write down a PID which

is not a Euclidean domain. The ring of integers of /—19 has this
5



property. It consists of all integral linear combinations of 1/2 and

v —19/2. If we put
y_ 1+V=I0
=—

then this is the same as the ring Z[f].
It is easy to check that the units in this ring are 1. It is a non-trivial
fact that this ring is a PID.
Consider the matrix
0
(1)
@)-0+(-2)-2=1,

and the ged of # and 2 is 1. Let

5 (% ).

Then det B = 1 so that B is invertible and

pa- (1),

We claim that one cannot row reduce A to this form. Suppose that

(0

is an invertible matrix such that

ea- ().

As 2 and 0 are coprime, (¢,d) must be a multiple of (—2,0). As C
is invertible, the determinant of C' is a unit. It follows that (c,d) are
coprime. Thus (¢,d) = £(—2,6). Thus the top row must be of the
form

Note that 80 = 5. Thus

(CL, b) - j:(97 _2) + Q(ev 2>’
where ¢ is an arbitrary element of the ring.
If we can row reduce A to e; then we can choose C' so that it is product
of lower and upper triangular matrices, a permutation matrix and an
invertible diagonal matrix.



