MODEL ANSWERS TO THE FOURTH HOMEWORK

1. (i) We first try to define a map left to right. Since finite direct sums are the same as direct products, we just have to define a map to each factor. By the universal property of the wedge product we just have to define a map from the Cartesian product of $M \oplus N$ with itself d times which is multilinear and alternating:

$$
(M \oplus N)^{d} \longrightarrow \bigwedge^{i} M \otimes_{R} \bigwedge^{j} N .
$$

To define this map, we work by analogy with the binomial theorem. If we expand $(a+b)^{d}$ using the distributive rule, then we terms of the form $a^{i} b^{j}$ by taking a from i factors and b from the rest. The one difference for the wedge product is we need to keep track of sign. We send a d-tuple

$$
\left(m_{i}, n_{i}\right)_{i=1}^{d}
$$

to

$$
\sum_{I, J} \epsilon_{I, J} m_{I} \otimes n_{J}
$$

The sum runs over all partitions (I, J) of the integers into two pieces of sizes i and $j . \epsilon_{I, J}$ is the sign of the permutation given by I and J (in other words, imagine arranging a deck of cards, first put down the elements of I and then the elements of J, in increasing order). m_{I} denotes the wedge product of m_{i}, as i runs over the elements of I.
It is not hard to check that this is multilinear and alternating.
To define a map right to left, we proceed in a similar fashion. It suffices to define a bilinear map

$$
\bigwedge^{i} M \times \bigwedge^{j} N \longrightarrow \bigwedge^{d}(M \oplus N)
$$

We send $\left(m_{I}, n_{J}\right)$ to $\epsilon_{I, J}\left(m_{a_{1}}, 0\right) \wedge\left(m_{a_{2}}, 0\right) \wedge \cdots \wedge\left(0, n_{b_{j}}\right)$.
To finish it suffices to check that the composition from

$$
\bigwedge^{i} M \otimes \otimes_{R}^{j} \bigwedge^{j} N \longrightarrow \bigwedge_{R}^{i} M \otimes \bigwedge_{R}^{j} N
$$

is \pm times the identity.
(ii) By the universal property of the tensor product, an element of $\operatorname{Hom}_{R}(M \underset{R}{\otimes} N, P)$ is the same as a bilinear map

$$
M \times N \longrightarrow P
$$

If we fix $m \in M$ this gives us an R-linear map $N \longrightarrow P$, an element of $\operatorname{Hom}_{R}(N, P)$. Varying m gives us a function

$$
M \longrightarrow \operatorname{Hom}_{R}(N, P)
$$

which it is not hard to see is R-linear. Thus we get an element of $\operatorname{Hom}_{R}\left(M, \operatorname{Hom}_{R}(N, P)\right)$. It is straightforward to check that this assignment is R-linear.
Now suppose that we have an element of $\operatorname{Hom}_{R}\left(M, \operatorname{Hom}_{R}(N, P)\right)$. For every $m \in M$ we get an R-linear map $N \longrightarrow P$. This defines a function $M \times N \longrightarrow P$ which is bilinear, so that we get an element of $\operatorname{Hom}_{R}(M \underset{R}{\otimes} N, P)$. It is not hard to see that this is the inverse of the first assignment, so that we get an isomorphism:

$$
\operatorname{Hom}_{R}(M \underset{R}{\otimes} N, P) \simeq \operatorname{Hom}_{R}\left(M, \operatorname{Hom}_{R}(N, P)\right) .
$$

2. We first construct a map. By the universal property of the tensor product, we just need to exhibit a bilinear map

$$
L: V^{*} \times W \longrightarrow \operatorname{Hom}_{F}(V, W)
$$

Given a pair (ϕ, w) send this to the linear function $\psi(v)=\phi(v) w$. It is not hard to check that this map is bilinear.
Suppose we are given an element of $V^{*} \underset{F}{\otimes} W$.

$$
\sum \phi_{i} \otimes w_{i}
$$

where $\phi_{i} \in V^{*}$ is a linear functional on V and $w_{i} \in W$. We send this to the linear map

$$
\psi: V \longrightarrow W \quad \text { given by } \quad \psi(v)=\sum \phi_{i}(v) w_{i}
$$

The image of ψ is contained in the span of the vectors $w_{1}, w_{2}, \ldots, w_{k}$ so that $\psi \in \operatorname{Hom}_{F}^{f}(V, W)$.
Suppose that W_{0} and W_{1} are complimentary linear subspaces. Then

$$
V^{*} \underset{F}{\otimes} W \simeq V^{*} \underset{F}{\otimes} W_{0} \oplus V^{*} \underset{F}{\otimes} W_{1}
$$

and

$$
\operatorname{Hom}_{F}(V, W) \simeq \operatorname{Hom}_{F}\left(V, W_{0}\right) \oplus \operatorname{Hom}_{F}\left(V, W_{1}\right)
$$

Moreover L respects this decomposition.

Now we check that L is injective and surjective. Suppose first that W is finite dimensional. In this case $W \simeq F^{r}$, for some r. As

$$
\begin{aligned}
V^{*} \underset{F}{\otimes} W & \simeq V_{F}^{*} \underset{F}{\otimes} F^{r} \\
& \simeq\left(V^{*} \underset{F}{\otimes} F\right)^{r} \\
& \simeq\left(V^{*}\right)^{r},
\end{aligned}
$$

and

$$
\begin{aligned}
\operatorname{Hom}_{F}^{f}(V, W) & =\operatorname{Hom}_{F}(V, W) \\
& \simeq \operatorname{Hom}_{F}\left(V, F^{r}\right) \\
& \simeq\left(\operatorname{Hom}_{F}(V, F)\right)^{r} \\
& \simeq\left(V^{*}\right)^{r},
\end{aligned}
$$

it is clear that L is an isomorphism in this case.
Now consider the general case. If $\psi \in \operatorname{Hom}_{F}^{f}(V, W)$ then we want to construct an element of $V^{*} \otimes W$ mapping to ψ. Let W_{0} be the image of ψ and let $\psi_{0}: V \longrightarrow W_{0} \stackrel{F}{\text { be }}$ the obvious factorisation of $V \longrightarrow W$. Then we may find $\alpha_{0} \in V^{*} \underset{F}{\otimes} W_{0}$ such that α_{0} is sent to ψ_{0}. Let α be the image of α_{0} in $V^{*} \underset{F}{\otimes} W$. It is clear that $L(\alpha)=\psi$. Thus L is surjective.
Now suppose that we have an element $\alpha \in V^{*} \underset{F}{\otimes} W$ of the kernel of L. Then

$$
\alpha=\sum \phi_{i} \otimes w_{i} .
$$

Let W_{0} be the span of $w_{1}, w_{2}, \ldots, w_{k}$. Then we may find $\alpha_{0} \in V^{*} \otimes W_{0}$ mapping to α such that the image of α_{0} in $\operatorname{Hom}_{F}\left(V, W_{0}\right)$ is zero. As W_{0} is finite dimensional, it follows that α_{0} is zero.
As W is a vector space, we may find W_{1} a complimentary linear subspace such that $W=W_{0}+W_{1}$. As L respects this decomposition, it follows that α is zero so that it must be zero to begin with.
3. First suppose that

$$
M \longrightarrow N \longrightarrow P \longrightarrow 0
$$

is right exact. Call the first map $f: M \longrightarrow N$ and the second map $g: N \longrightarrow P$. Note that $\operatorname{Im} f \subset \operatorname{Ker} g$ is equivalent to $g \circ f=0$.
Let Q be any R-module. Suppose that $\alpha \in \operatorname{Hom}_{R}(P, Q)$. Then the image of α is $\beta=g^{*}(\alpha)=\alpha \circ g$. If α is non-zero then we may find $p \in P$ such that $\alpha(p) \neq 0$. As g is surjective we may find $n \in N$ such that $g(n)=p$. In this case $\beta(n)=\alpha(g(n))=\alpha(p) \neq 0$. Thus $\beta \neq 0$ and so we have exactness on the left.

Now consider the image γ of α in $\operatorname{Hom}_{R}(M, Q) . \quad \gamma=\alpha \circ(g \circ f)$. But $g \circ f=0$ by exactness, so that $\gamma=0$. Finally suppose that $\beta \in \operatorname{Hom}_{R}(N, Q)$ and the image of β is zero, so that $\beta \circ f=0$. Then β is zero on the image of f, so that β is zero on the kernel of g. By the universal property of the quotient, it follows that β induces a morphism $\alpha: M \longrightarrow Q$ such that $\beta=\alpha \circ g$. Thus β is the image of α and so we have a left exact sequence.
Now suppose that

$$
0 \longrightarrow \operatorname{Hom}_{R}(P, Q) \longrightarrow \operatorname{Hom}_{R}(N, Q) \longrightarrow \operatorname{Hom}_{R}(M, Q),
$$

is left exact for every R-module Q.
Suppose we take $Q=M$ and $\gamma \in \operatorname{Hom}_{R}(M, M)$ to be the identity. Then we can find $\beta \in \operatorname{Hom}_{R}(N, Q)$ such that $\gamma=\beta \circ f$. As γ is injective, it follows that f is injective.
Now take $Q=P$ and let α be the identity. Then $g \circ f \circ \alpha=0$ so that $g \circ f=0$. Finally take $Q=N / \operatorname{Im} f$ and let β be the canonical map $N \longrightarrow Q$. Then the image of β in $\operatorname{Hom}_{R}(M, Q)$ is zero. So we may find $\alpha P \longrightarrow Q$ mapping to β, so that $\beta=g \circ \alpha$. This is only possible if the image of f contains the kernel of g. Thus the first seqeunce is exact.
4. Suppose that the first sequence is left exact. Let Q be R-module. If $\alpha \in \operatorname{Hom}_{R}(Q, M)$ is non-zero then we may find $q \in Q$ such that $\alpha(q) \neq 0$. If $\beta=f \circ \alpha$ then $\beta(q)=f(\alpha(q)) \neq 0$ as f is injective.
If γ is the image of α in $\operatorname{Hom}_{R}(Q, P)$ then

$$
\gamma=g \circ(f \circ \alpha)=(g \circ f) \circ \alpha=0,
$$

as $g \circ f=0$. If $\beta \in \operatorname{Hom}_{R}(Q, N)$ and $g \circ \beta=0$ then the image of β lands in the kernel of g. As this is equal to the image of f, the image of β must land in the image of f. As f defines an isomorphism with its image, we can find $\alpha \in \operatorname{Hom}_{R}(Q, M)$ such that $f \circ \alpha=\beta$. Thus the second sequence is always exact.
Now suppose that the second sequence is always left exact. If $Q=R$ then

$$
0 \longrightarrow \operatorname{Hom}_{R}(R, M) \longrightarrow \operatorname{Hom}_{R}(R, N) \longrightarrow \operatorname{Hom}_{R}(R, P),
$$

is exact. On the other hand, the map

$$
M \longrightarrow \operatorname{Hom}_{R}(R, M)
$$

which sends m to the R-linear map $r \longrightarrow r m$ is an isomorphism. Thus we recover the first exact sequence, which is then automatically left exact.
5. Suppose that the first sequence is right exact. If Q is an R-module and Q_{0} is any other R-module then let

$$
Q_{1}=\operatorname{Hom}_{R}\left(Q, Q_{0}\right)
$$

It follows by (3) that the sequence

$$
0 \longrightarrow \operatorname{Hom}_{R}\left(P, Q_{1}\right) \longrightarrow \operatorname{Hom}_{R}\left(N, Q_{1}\right) \longrightarrow \operatorname{Hom}_{R}\left(M, Q_{1}\right),
$$

is always left exact. By (1) (ii) it follows that
$0 \longrightarrow \operatorname{Hom}_{R}\left(P \underset{R}{\otimes} Q, Q_{0}\right) \longrightarrow \operatorname{Hom}_{R}\left(N \underset{R}{\otimes} Q, Q_{0}\right) \longrightarrow \operatorname{Hom}_{R}\left(M \underset{R}{\otimes} Q, Q_{0}\right)$,
is always left exact. By (3) it follows that

$$
M \underset{R}{\otimes} Q \longrightarrow N \underset{R}{\otimes} Q \longrightarrow P \underset{R}{\otimes} Q \longrightarrow 0
$$

is right exact for all R-modules Q.
Now suppose that the first sequence is right exact. If we take $Q=R$ then we recover the first exact sequence, since tensoring with R has no effect.
6. The key exact sequence is the short exact sequence

$$
0 \longrightarrow \mathbb{Z} \longrightarrow \mathbb{Z} \longrightarrow \mathbb{Z}_{2} \longrightarrow 0
$$

of \mathbb{Z}-modules, where the first map is multiplication by 2 . We take $Q=\mathbb{Z}_{2}$. First we look at maps into Q. Since

$$
\operatorname{Hom}_{\mathbb{Z}}\left(\mathbb{Z}, \mathbb{Z}_{2}\right)=\operatorname{Hom}_{\mathbb{Z}}\left(\mathbb{Z}_{2}, \mathbb{Z}_{2}\right)=\mathbb{Z}_{2}
$$

we get the sequence

$$
0 \longrightarrow \mathbb{Z}_{2} \longrightarrow \mathbb{Z}_{2} \longrightarrow \mathbb{Z}_{2} \longrightarrow 0
$$

This is surely not a short exact sequence.
Now suppose we take $Q=\mathbb{Z}_{2}$ and look at maps from Q. Since

$$
\operatorname{Hom}_{\mathbb{Z}}\left(\mathbb{Z}_{2}, \mathbb{Z}\right)=0
$$

we get the sequence

$$
0 \longrightarrow 0 \longrightarrow 0 \longrightarrow \mathbb{Z}_{2} \longrightarrow 0
$$

This is surely not a short exact sequence.
Finally suppose we tensor by $Q=\mathbb{Z}_{2}$. Then we get the first sequence

$$
0 \longrightarrow \mathbb{Z}_{2} \longrightarrow \mathbb{Z}_{2} \longrightarrow \mathbb{Z}_{2} \longrightarrow 0
$$

which is still not a short exact sequence.
Challenge Problem: 7. The key point is to write down a PID which is not a Euclidean domain. The ring of integers of $\sqrt{-19}$ has this
property. It consists of all integral linear combinations of $1 / 2$ and $\sqrt{-19} / 2$. If we put

$$
\theta=\frac{1+\sqrt{-19}}{2}
$$

then this is the same as the ring $\mathbb{Z}[\theta]$.
It is easy to check that the units in this ring are ± 1. It is a non-trivial fact that this ring is a PID.
Consider the matrix

$$
A=\binom{\theta}{2}
$$

Note that $\theta \bar{\theta}=5$. Thus

$$
(\bar{\theta}) \cdot \theta+(-2) \cdot 2=1
$$

and the gcd of θ and 2 is 1 . Let

$$
B=\left(\begin{array}{cc}
\bar{\theta} & -2 \\
-2 & \theta
\end{array}\right)
$$

Then $\operatorname{det} B=1$ so that B is invertible and

$$
B A=\binom{1}{0}
$$

We claim that one cannot row reduce A to this form. Suppose that

$$
C=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)
$$

is an invertible matrix such that

$$
C A=\binom{1}{0}
$$

As 2 and θ are coprime, (c, d) must be a multiple of $(-2, \theta)$. As C is invertible, the determinant of C is a unit. It follows that (c, d) are coprime. Thus $(c, d)= \pm(-2, \theta)$. Thus the top row must be of the form

$$
(a, b)= \pm(\bar{\theta},-2)+q(\theta, 2)
$$

where q is an arbitrary element of the ring.
If we can row reduce A to e_{1} then we can choose C so that it is product of lower and upper triangular matrices, a permutation matrix and an invertible diagonal matrix.

