
MODEL ANSWERS TO THE FOURTH HOMEWORK

1. (i) We first try to define a map left to right. Since finite direct sums
are the same as direct products, we just have to define a map to each
factor. By the universal property of the wedge product we just have to
define a map from the Cartesian product of M ⊕N with itself d times
which is multilinear and alternating:

(M ⊕N)d −→
i∧
M ⊗

R

j∧
N.

To define this map, we work by analogy with the binomial theorem.
If we expand (a+ b)d using the distributive rule, then we terms of the
form aibj by taking a from i factors and b from the rest. The one
difference for the wedge product is we need to keep track of sign. We
send a d-tuple

(mi, ni)
d
i=1

to ∑
I,J

εI,JmI ⊗ nJ .

The sum runs over all partitions (I, J) of the integers into two pieces
of sizes i and j. εI,J is the sign of the permutation given by I and
J (in other words, imagine arranging a deck of cards, first put down
the elements of I and then the elements of J , in increasing order). mI

denotes the wedge product of mi, as i runs over the elements of I.
It is not hard to check that this is multilinear and alternating.
To define a map right to left, we proceed in a similar fashion. It suffices
to define a bilinear map

i∧
M ×

j∧
N −→

d∧
(M ⊕N).

We send (mI , nJ) to εI,J(ma1 , 0) ∧ (ma2 , 0) ∧ · · · ∧ (0, nbj).
To finish it suffices to check that the composition from

i∧
M ⊗

R

j∧
N −→

i∧
M ⊗

R

j∧
N,

is ± times the identity.
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(ii) By the universal property of the tensor product, an element of
HomR(M ⊗

R
N,P ) is the same as a bilinear map

M ×N −→ P.

If we fix m ∈ M this gives us an R-linear map N −→ P , an element
of HomR(N,P ). Varying m gives us a function

M −→ HomR(N,P ),

which it is not hard to see is R-linear. Thus we get an element of
HomR(M,HomR(N,P )). It is straightforward to check that this as-
signment is R-linear.
Now suppose that we have an element of HomR(M,HomR(N,P )). For
every m ∈ M we get an R-linear map N −→ P . This defines a func-
tion M × N −→ P which is bilinear, so that we get an element of
HomR(M ⊗

R
N,P ). It is not hard to see that this is the inverse of the

first assignment, so that we get an isomorphism:

HomR(M ⊗
R
N,P ) ' HomR(M,HomR(N,P )).

2. We first construct a map. By the universal property of the tensor
product, we just need to exhibit a bilinear map

L : V ∗ ×W −→ HomF (V,W ).

Given a pair (φ,w) send this to the linear function ψ(v) = φ(v)w. It
is not hard to check that this map is bilinear.
Suppose we are given an element of V ∗ ⊗

F
W .∑

φi ⊗ wi,

where φi ∈ V ∗ is a linear functional on V and wi ∈ W . We send this
to the linear map

ψ : V −→ W given by ψ(v) =
∑

φi(v)wi.

The image of ψ is contained in the span of the vectors w1, w2, . . . , wk

so that ψ ∈ Homf
F (V,W ).

Suppose that W0 and W1 are complimentary linear subspaces. Then

V ∗ ⊗
F
W ' V ∗ ⊗

F
W0 ⊕ V ∗ ⊗

F
W1

and

HomF (V,W ) ' HomF (V,W0)⊕ HomF (V,W1).

Moreover L respects this decomposition.
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Now we check that L is injective and surjective. Suppose first that W
is finite dimensional. In this case W ' F r, for some r. As

V ∗ ⊗
F
W ' V ∗ ⊗

F
F r

' (V ∗ ⊗
F
F )r

' (V ∗)r,

and

Homf
F (V,W ) = HomF (V,W )

' HomF (V, F r)

' (HomF (V, F ))r

' (V ∗)r,

it is clear that L is an isomorphism in this case.
Now consider the general case. If ψ ∈ Homf

F (V,W ) then we want to
construct an element of V ∗ ⊗

F
W mapping to ψ. Let W0 be the image

of ψ and let ψ0 : V −→ W0 be the obvious factorisation of V −→ W .
Then we may find α0 ∈ V ∗ ⊗

F
W0 such that α0 is sent to ψ0. Let α

be the image of α0 in V ∗ ⊗
F
W . It is clear that L(α) = ψ. Thus L is

surjective.
Now suppose that we have an element α ∈ V ∗ ⊗

F
W of the kernel of L.

Then
α =

∑
φi ⊗ wi.

Let W0 be the span of w1, w2, . . . , wk. Then we may find α0 ∈ V ∗⊗
F
W0

mapping to α such that the image of α0 in HomF (V,W0) is zero. As
W0 is finite dimensional, it follows that α0 is zero.
As W is a vector space, we may find W1 a complimentary linear sub-
space such that W = W0 + W1. As L respects this decomposition, it
follows that α is zero so that it must be zero to begin with.
3. First suppose that

M −→ N −→ P −→ 0,

is right exact. Call the first map f : M −→ N and the second map
g : N −→ P . Note that Im f ⊂ Ker g is equivalent to g ◦ f = 0.
Let Q be any R-module. Suppose that α ∈ HomR(P,Q). Then the
image of α is β = g∗(α) = α ◦ g. If α is non-zero then we may find
p ∈ P such that α(p) 6= 0. As g is surjective we may find n ∈ N such
that g(n) = p. In this case β(n) = α(g(n)) = α(p) 6= 0. Thus β 6= 0
and so we have exactness on the left.
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Now consider the image γ of α in HomR(M,Q). γ = α ◦ (g ◦ f).
But g ◦ f = 0 by exactness, so that γ = 0. Finally suppose that
β ∈ HomR(N,Q) and the image of β is zero, so that β ◦ f = 0. Then β
is zero on the image of f , so that β is zero on the kernel of g. By the
universal property of the quotient, it follows that β induces a morphism
α : M −→ Q such that β = α ◦ g. Thus β is the image of α and so we
have a left exact sequence.
Now suppose that

0 −→ HomR(P,Q) −→ HomR(N,Q) −→ HomR(M,Q),

is left exact for every R-module Q.
Suppose we take Q = M and γ ∈ HomR(M,M) to be the identity.
Then we can find β ∈ HomR(N,Q) such that γ = β ◦ f . As γ is
injective, it follows that f is injective.
Now take Q = P and let α be the identity. Then g ◦ f ◦ α = 0 so that
g ◦ f = 0. Finally take Q = N/ Im f and let β be the canonical map
N −→ Q. Then the image of β in HomR(M,Q) is zero. So we may
find αP −→ Q mapping to β, so that β = g ◦ α. This is only possible
if the image of f contains the kernel of g. Thus the first seqeunce is
exact.
4. Suppose that the first sequence is left exact. Let Q be R-module.
If α ∈ HomR(Q,M) is non-zero then we may find q ∈ Q such that
α(q) 6= 0. If β = f ◦ α then β(q) = f(α(q)) 6= 0 as f is injective.
If γ is the image of α in HomR(Q,P ) then

γ = g ◦ (f ◦ α) = (g ◦ f) ◦ α = 0,

as g ◦ f = 0. If β ∈ HomR(Q,N) and g ◦ β = 0 then the image of β
lands in the kernel of g. As this is equal to the image of f , the image
of β must land in the image of f . As f defines an isomorphism with
its image, we can find α ∈ HomR(Q,M) such that f ◦α = β. Thus the
second sequence is always exact.
Now suppose that the second sequence is always left exact. If Q = R
then

0 −→ HomR(R,M) −→ HomR(R,N) −→ HomR(R,P ),

is exact. On the other hand, the map

M −→ HomR(R,M),

which sends m to the R-linear map r −→ rm is an isomorphism. Thus
we recover the first exact sequence, which is then automatically left
exact.
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5. Suppose that the first sequence is right exact. If Q is an R-module
and Q0 is any other R-module then let

Q1 = HomR(Q,Q0).

It follows by (3) that the sequence

0 −→ HomR(P,Q1) −→ HomR(N,Q1) −→ HomR(M,Q1),

is always left exact. By (1) (ii) it follows that

0 −→ HomR(P ⊗
R
Q,Q0) −→ HomR(N ⊗

R
Q,Q0) −→ HomR(M ⊗

R
Q,Q0),

is always left exact. By (3) it follows that

M ⊗
R
Q −→ N ⊗

R
Q −→ P ⊗

R
Q −→ 0.

is right exact for all R-modules Q.
Now suppose that the first sequence is right exact. If we take Q = R
then we recover the first exact sequence, since tensoring with R has no
effect.
6. The key exact sequence is the short exact sequence

0 −→ Z −→ Z −→ Z2 −→ 0,

of Z-modules, where the first map is multiplication by 2. We take
Q = Z2. First we look at maps into Q. Since

HomZ(Z,Z2) = HomZ(Z2,Z2) = Z2,

we get the sequence

0 −→ Z2 −→ Z2 −→ Z2 −→ 0.

This is surely not a short exact sequence.
Now suppose we take Q = Z2 and look at maps from Q. Since

HomZ(Z2,Z) = 0,

we get the sequence

0 −→ 0 −→ 0 −→ Z2 −→ 0.

This is surely not a short exact sequence.
Finally suppose we tensor by Q = Z2. Then we get the first sequence

0 −→ Z2 −→ Z2 −→ Z2 −→ 0,

which is still not a short exact sequence.
Challenge Problem: 7. The key point is to write down a PID which
is not a Euclidean domain. The ring of integers of

√
−19 has this
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property. It consists of all integral linear combinations of 1/2 and√
−19/2. If we put

θ =
1 +
√
−19

2
then this is the same as the ring Z[θ].
It is easy to check that the units in this ring are ±1. It is a non-trivial
fact that this ring is a PID.
Consider the matrix

A =

(
θ
2

)
.

Note that θθ̄ = 5. Thus

(θ̄) · θ + (−2) · 2 = 1,

and the gcd of θ and 2 is 1. Let

B =

(
θ̄ −2
−2 θ

)
.

Then detB = 1 so that B is invertible and

BA =

(
1
0

)
.

We claim that one cannot row reduce A to this form. Suppose that

C =

(
a b
c d

)
is an invertible matrix such that

CA =

(
1
0

)
.

As 2 and θ are coprime, (c, d) must be a multiple of (−2, θ). As C
is invertible, the determinant of C is a unit. It follows that (c, d) are
coprime. Thus (c, d) = ±(−2, θ). Thus the top row must be of the
form

(a, b) = ±(θ̄,−2) + q(θ, 2),

where q is an arbitrary element of the ring.
If we can row reduce A to e1 then we can choose C so that it is product
of lower and upper triangular matrices, a permutation matrix and an
invertible diagonal matrix.
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