
MODEL ANSWERS TO THE THIRD HOMEWORK

1. (a) We have to define an R-linear map,

φ : M ⊗
R
N −→ N ⊗

R
M.

By the universal property of M ⊗
R
N , it suffices to exhibit a bilinear

map

f : M ×N −→ N ⊗
R
M

The composition of u : N ×M −→ N ⊗
R
M and the map

M ×N −→ N ×M which sends (m,n) −→ (n,m)

will obviously do. The inverse map is constructed similarly. The com-
position either way is easily seen to be the identity, either because
it satisfies the universal property of the identity, or because it is the
identity map on generators.
(b) One can prove this as above. Here is a much sneakier way to
proceed. Note the canonical isomorphism,

(M ×N)× P 'M × (N × P ).

On the other hand, given either triple product, one can consider tri-
linear maps, that is maps that are linear in all three variables. It is
not hard to check that (M ⊗

R
N) ⊗

R
P satisfies the corresponding uni-

versal propery. Similarly for M ⊗
R

(N ⊗
R
P ). Thus they are canonically

isomorphic.
(c) We are going to show that M satisfies the properties of the tensor
product. First we need to exhibit a bilinear map,

u : R×M −→M

The definition of u is almost forced, send (r,m) to rm. This is clearly
a bilinear map. Now suppose we are given a bilinear map

f : R×M −→ N.

Define

φ : M −→ N
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by sending m to f(1,m). We check that the diagram,

R×M f- N

M

u

?

φ
-

commutes. Suppose that (r,m) ∈ R×M . Then

φ ◦ u(r,m) = φ(rm)

= f(1, rm)

= rf(1,m)

= f(r,m),

where we applied bilinearity of f twice. Thus the diagram commutes.
Finally we check that φ is R-linear. Suppose that m1, m2 ∈M . Then

φ(m1 +m2) = f(1,m1 +m2)

= f(1,m1) + f(1,m2)

= φ(m1) + φ(m2).

Now suppose that r ∈ R and m ∈M . Then

φ(rm) = f(1, rm)

= rf(1,m)

= rφ(m).

Thus φ is R-linear. Thus M satisfies all the properties of a tensor
product and the result is clear.
(d) First we define a bilinear map

M × (N ⊕ P ) −→ (M ⊗
R
N)⊕ (M ⊗

R
P ),

by sending (m, (n, p)) to (m⊗n,m⊗ p). It is easy to check that this is
bilinear. This gives us a map one way. To get a map the other way, it
suffices, by definition of the direct sum and then of the tensor product
and by symmetry, to exhibit a bilinear map

M ×N −→M ⊗
R

(N ⊕ P ).

For this send (m,n) to m ⊗ (n, 0). Again it is clear that this map is
bilinear and that the induced R-linear maps are inverse to each other.
(e) As F ' Rn, this follows immediately from (c) and (d), by induction
on n.
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2. Let d be the gcd of m and n. I claim that

Zm ⊗
Z
Zm ' Zd.

The proof proceeds in two steps. First observe that

m(1⊗ 1) = m⊗ 1

= 0⊗ 1

= 0.

Similarly n(1⊗ 1) = 0. As Z is a PID, we may find r and s such that

d = rm+ sn.

Thus

d(1⊗ 1) = (rm+ sn)1⊗ 1

= r(m(1⊗ 1) + s(n(1⊗ 1))

= 0.

Thus Zm⊗
Z
Zm is surely isomorphic to a subgroup of Zd. It remains to

check that no smaller multiple of 1⊗ 1 is zero. The best way to prove
this is to use the universal property. Let

f : Zm × Zm −→ Zd
be the map that sends (a, b) to ab. As d divides both m and n, this
map is indeed well-defined. On the other it is clearly bilinear. By the
universal property, it induces an R-linear map

φ : Zm ⊗
Z
Zm −→ Zd.

This map sends 1⊗ 1 to f(1, 1), that is, 1. Hence if k(1⊗ 1) = 0, then
k is zero in Zd and so d divides k. The result follows.
3. We first prove that M ⊗

R
N is finitely generated. Suppose that

x1, x2, . . . , xm and y1, y2, . . . , yn are generators of M and N . Then I
claim that xi ⊗ yj are generators of M ⊗

R
N . Indeed this is generated

by elements of the form m⊗ n, and so it is enough to observe that if

m =
∑

rixi and n =
∑

sini,

then

m⊗ n =
∑

risjxi ⊗ yj,
where of course we use bilinearity to distribute the sum.
As R is Noetherian, M ⊗

R
N is Noetherian, as it is a finitely generated

module over a Noetherian ring.
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But in fact we don’t need the fact that R is Noetherian. First observe
that the direct sum Mn is Noetherian, by induction on n, applied to
the standard short exact sequence:

0 −→Mn−1 −→Mn −→M −→ 0.

It follows that

M ⊗
R
Rn ' (M ⊗

R
R)n 'Mn.,

is Noetherian. By assumption there is a surjective R-linear map

Rn −→ N,

for some n. If we tensor this by M we get a surjective R-linear map (it
is a general fact that surjective maps remain surjective after tensoring,
see the next hwk)

M ⊗
R
Rn −→M ⊗

R
N.

Thus M ⊗
R
N is a quotient of a Noetherian R-module, so that it is

Noetherian.
4. An R-module is the same as a real vector space. Vector spaces are
classified by their dimension.
C is a two dimensional vector space over R. Therefore

C⊗
R
C

is a four dimensional real vector space.

C⊗
C
C

is a one dimensional complex vector space. Considered as a real vector
space it is two dimensional.
Thus C⊗

R
C and C⊗

C
C are not isomorphic R-modules.

5. Once again a module over a field is nothing more than a vector
space, so we just have to show these have the same dimension.
Consider

a

b
⊗ c

d
∈ Q⊗

Z
Q

where a, b, c and d are all integers, and bd 6= 0. We have

a

b
⊗ c

d
=
c

d

a

b
⊗ 1.

Thus every element of Q⊗
Z
Q is equivalent to

a

b
⊗ 1.
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It follows that Q⊗
Z
Q is a one dimensional vector space over Q. On the

other hand, Q⊗
Q
Q is also a one dimensional vector space over Q,

6. Consider
a

b
⊗ c

d
,

where a, b, c and d are all integers, and bd 6= 0. We may suppose that
d > 0. In this case

0 =
a

bd
⊗ 0

=
a

bd
⊗ c

= d(
a

bd
⊗ c

d
)

=
a

b
⊗ c

d
.

Thus
Q/Z⊗

Z
Q/Z ' 0.

Challenge Problem: 7. Let Mi be a collection of R-modules, indexed
by a set I. Let M be any R-module. We claim that there is a natural
isomorphism ⊕

i∈I

(Mi ⊗
R
M) ' (

⊕
i∈I

Mi)⊗
R
M.

To define an R-linear map left to right, by the universal property of
the direct sum, we just need to define an R-linear map

Mi ⊗
R
M −→ (

⊕
i∈I

Mi)⊗
R
M,

for each index i. By the universal property of the tensor product it
suffices to define a bilinear map

Mi ×M −→ (
⊕
i∈I

Mi)⊗
R
M,

We just send (mi,m) to the element m′i ⊗m, where m′i is the element
of

⊕
i∈IMi with the entry mi ∈ Mi and 0 everywhere else. This map

is clearly bilinear.
To define a map right to left we just need to define a bilinear map

(
⊕
i∈I

Mi)×M −→
⊕
i∈I

(Mi ⊗
R
M).

We just send ((mi)i∈I ,m) to (mi ⊗m)i∈I . By definition of the direct
sum, mi = 0 for all but finitely many i, so that mi ⊗m = 0 for all but
finitely many i.
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Thus we get R-linear maps in both directions, which are easily seen to
be inverse maps.
If we replace the direct sum by the product, then we can still define an
R-linear map right to left but it is not so clear how to go left to right.
Let R = Z, Mi = Zi and M = Q. Note that

Mi ⊗
R
M = 0.

Indeed the LHS is a vector space over Q, by extension of scalars. It is
also a torsion abelian group; every element has order dividing i. The
only vector space over Q where every element is torsion is the trivial
vector space.
Thus ∏

i∈I

(Mi ⊗
R
M) = 0.

On the other hand, ∏
i∈I

Mi

has elements of infinite order. The order (mi)i∈I , where mi = 1 for all
i, has infinite order. This gives us an injective Z-linear map

Z −→
∏
i∈I

Mi

The key point is that Q is a flat Z-module, meaning that when we
tensor this injective map by Q, it remains injective. Therefore, if we
tensor this with Q, we get a vector space of positive dimension.
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