MODEL ANSWERS TO THE SECOND HOMEWORK

1. (i) We follow the proof of Hilbert's Basis Theorem, although there are some twists to the story. Let $I \subset R \llbracket x \rrbracket$ be an ideal. Let $J \subset R$ be the set of leading coefficients (that is, the coefficients of the lowest non-zero term), union zero.
I claim that J is an ideal. It is non-empty as it contains 0 . If a and b are in J, then we may find $f(x)$ and $g(x)$ in I such that $f(x)$ has leading term $a x^{d}$ and $g(x)$ has leading term $b x^{e}$. Multiplying by an appropriate power of x, we may assume that $d=e$. As $f+g \in I$, it follows that $a+b \in J$. Similarly $r a \in J$. Thus J is an ideal. As R is Noetherian, we have

$$
J=\left\langle a_{1}, a_{2}, \ldots, a_{k}\right\rangle,
$$

for some $a_{1}, a_{2}, \ldots, a_{k} \in J$. Pick $f_{i}(x) \in I$ with leading coefficient a_{i}. Let m be the maximum of the degrees of $f_{1}, f_{2}, \ldots, f_{k}$.
Note that there is a R-module homomorphism

$$
\pi: R \llbracket x \rrbracket \longrightarrow R[x \rrbracket
$$

which sends a power series $p(x)$ to the polynomial of degree less than m, obtained by setting all of the coefficients of $p(x)$ of degree at least m to zero. The image M of π is the set of all polynomials of degree less than m. M is the R-submodule generated by $1, x, x^{2}, \ldots, x^{m-1}$. As R is Noetherian, M is Noetherian, as it is finitely generated. If N is the image of I then N is a submodule of M. Thus N is finitely generated. Pick generators and let $h_{1}, h_{2}, \ldots, h_{l}$ be the inverse image of these generators in $R \llbracket x \rrbracket$. Then $h_{1}, h_{2}, \ldots, h_{l}$ are power series of degrees at most $m-1$.
Now suppose that $p(x)$ is a power series. As $\pi(p(x)$ is a polynomial of degree at most $m-1$ belonging to N, it follows that we may write

$$
p(x)=p_{0}(x)+p_{1}(x),
$$

where $p_{0}(x)$ is a power series of degree less than m, a linear combination of $h_{1}, h_{2}, \ldots, h_{l}$ and $p_{1}(x)$ is a power series of degree at least m. It suffices to prove that $p_{1}(x)$ is in the ideal generated by $f_{1}, f_{2}, \ldots, f_{k}$, since then $f_{1}, f_{2}, \ldots, f_{k}$ and $h_{1}, h_{2}, \ldots, h_{l}$ clearly generate I. Thus we may as well assume that $f(x)$ has degree at least m. We define a sequence of polynomials, $p_{1}^{(j)}(x), p_{2}^{(j)}(x), \ldots, p_{k}^{(j)}(x)$, such that if we
put

$$
r^{(j)}(x)=f(x)-\sum_{i} p_{i}^{(j)}(x) f_{i}(x)
$$

then as we increase j, the degree of r goes up and the initial coefficients of $p_{i}^{(j)}(x)$, stabilise. Supposing that we can do this, taking the limit (in the obvious sense), then the polynomials become power series and the degree of r goes to infinity, which is the same as to say that in fact f is a linear combination of the $f_{1}, f_{2}, \ldots, f_{k}$. By induction on the degree, it suffices to increase the degree of r by one, that is, to kill the leading coefficient of f. Suppose that the leading coefficient of f is a. Then $a \in J$. Pick $r_{1}, r_{2}, \ldots, r_{k}$ such that

$$
a=\sum r_{i} a_{i} .
$$

Then the coefficient of x^{d} for

$$
f(x)-\sum_{i} r_{i} x^{d-d_{i}} f_{i}(x)
$$

is zero by construction and we are done.
(ii) Define $R \llbracket x_{1}, x_{2}, \ldots, x_{n} \rrbracket$ as for the polynomial ring, but erasing any mention of finiteness conditions, so that a general element of $R \llbracket x \rrbracket$ is of the form

$$
\sum a_{I} x^{I}
$$

where the sum ranges over all multi-indexes. As before there is a canonical isomorphism,

$$
R \llbracket x_{1}, x_{2}, \ldots, x_{n} \rrbracket \simeq R \llbracket x_{1}, x_{2}, \ldots, x_{n-1} \rrbracket \llbracket x_{n} \rrbracket .
$$

The result then follows by a straightforward induction.
2. Let M_{n} be the kernel of ϕ^{n}. Note that we have an ascending chain,

$$
M_{1} \subset M_{2} \subset M_{3} \subset \ldots
$$

Suppose that $M_{1} \neq 0$. We will define $m_{n} \in M_{n}-M_{n-1}$ recursively, so that $\phi\left(m_{n}\right)=m_{n-1}$. By assumption, there is $m_{1} \in M_{1}$, such that $m_{1} \neq 0$. Suppose we have defined $m_{1}, m_{2}, \ldots, m_{n}$. As ϕ is surjective, there is an $m_{n+1} \in M$ such that $\phi\left(m_{n+1}\right)=m_{n}$. As $m_{n} \in M_{n}$, it is immediate that $m_{n+1} \in M_{n+1}$ but not in M_{n}. Thus we have a strictly increasing sequence of submodules of M. This contradicts the fact that M is Noetherian.
Thus M_{1} is the trivial module and ϕ must be injective. In this case ϕ must be a bijection, so that it is an automorphism.
3. Let I be the ideal generated by S. As $S \subset I$ we surely have

$$
V(I) \subset \underset{2}{\subset} V(S)
$$

On the other hand, if $f \in I$ then we may find $f_{1}, f_{2}, \ldots, f_{i} \in S_{0}$ and $g_{1}, g_{2}, \ldots, g_{k} \in k\left[x_{1}, x_{2}, \ldots, x_{n}\right]$ such that

$$
f=\sum f_{i} g_{i}
$$

If $a=\left(a_{1}, a_{2}, \ldots, a_{n}\right) \in V(S)$ then $f_{i}(a)=0$ so that $f(a)=0$. It follows that

$$
V(S) \subset V(I) \quad \text { so that } \quad V(I)=V(S)
$$

By Hilbert's basis theorem we may find $h_{1}, h_{2}, \ldots, h_{k} \in I$ such that

$$
I=\left\langle h_{1}, h_{2}, \ldots, h_{k}\right\rangle
$$

As above,

$$
V(I)=V\left(h_{1}, h_{2}, \ldots, h_{k}\right)
$$

On the other hand, for each j we may find $f_{i}^{(j)} \in S, 1 \leq i \leq p_{j}$ such that h_{j} is a linear combination, with coefficients in $k\left[x_{1}, x_{2}, \ldots, x_{n}\right]$, of $f_{i}^{(j)} \in S, 1 \leq i \leq p_{j}$. Let S_{0} be the set of all polynomials, $f_{i}^{(j)}$, $1 \leq j \leq k$ and $1 \leq i \leq p_{j}$.
Then $S_{0} \subset S$ and

$$
V\left(S_{0}\right)=V(I)=V(S)
$$

