MODEL ANSWERS TO THE FIRST HOMEWORK

1. Define a function

$$
d: F[[x]]-\{0\} \longrightarrow \mathbb{N} \cup\{0\}
$$

by sending a power series to its degree. We have to check two things. It is easy to see that if f and g are non-zero power series then $d(f) \leq$ $d(f g)$.
Otherwise we have to check that if $f(x)$ and $g(x)$ are two power series, then we may find $q(x)$ and $r(x)$ such that

$$
g(x)=q(x) f(x)+r(x),
$$

where either $r(x)=0$ or the degree of $r(x)$ is less than the degree of $f(x)$. There are two cases. If the degree of $g(x)$ is less than the degree of $f(x)$ there is nothing to do; take $q(x)=0$ and $r(x)=g(x)$. In this case the fact that $r(x)$ has degree less than $f(x)$ is clear.
Otherwise I claim that $f(x)$ divides perfectly into $g(x)$. To see this, note that we have

$$
\begin{aligned}
f(x) & =a x^{d}+\ldots \\
& =x^{d}(a+\ldots) \\
& =x^{d} u
\end{aligned}
$$

Here as $a \neq 0$, and F is a field, a is a unit. Thus u is a unit. But then by the same token, $g(x)=x^{e} v$, where e is the degree of g and v is a unit. Thus

$$
g(x)=q(x) f(x)
$$

where $q(x)=x^{e-d} v w$ and w is the inverse of u. Thus we have a Euclidean Domain.
2. Suppose that M is an R-module. Then M is a vector space over F, call it V. Multiplication by x induces a linear map

$$
\phi: V \longrightarrow V .
$$

Now suppose that we are given a linear map

$$
\phi: V \longrightarrow V
$$

Given $f(x) \in R$, we need to define a multiplication map,

$$
m: V \longrightarrow V
$$

We send $v \in V$ to

$$
f(\phi)(v)
$$

3. Let F be the set of all functions from X to M. We need to define a rule of addition and scalar multiplication. Suppose that f and g are elements of M. Define $f+g$ as the pointwise sum, so that

$$
(f+g)(x)=f(x)+g(x)
$$

Similarly, given $r \in R$ and $f \in F$, define $r f$ as the pointwise product,

$$
(r f)(x)=r(f(x))
$$

It is an easy matter to check that with this rule of addition and scalar multiplication, F becomes an R-module.
Let $H=\operatorname{Hom}_{R}(M, N)$ be the set of all R-module homomorphisms. Then H is a subset of F, the set of all functions from M to N. It suffices to prove that H is non-empty and closed under addition and scalar multiplication.
First note that the zero map, which sends every element of M to the zero element of N, is R-linear. Thus H is certainly non-empty. Suppose that f and g are elements of H. We need to prove that $f+g$ is R-linear. Let m and n be elements of M and r and s be elements of R. We have

$$
\begin{aligned}
(f+g)(r m+s n) & =f(r m+s n)+g(r m+s n) \\
& =r f(m)+s f(n)+r g(m)+s g(n) \\
& =r f(m)+r g(m)+s f(m)+s f(n) \\
& =r(f+g)(m)+s(f+g)(n) .
\end{aligned}
$$

Thus $f+g$ is indeed R-linear. It is equally easy and just as formal to prove that $r f$ is R-linear. Thus H is closed under addition and scalar multiplication and so H is an R-module.
4. Since the arbitrary intersection of ideals is an ideal, it suffices to prove that I is an ideal, in the case that X contains one point x. Clearly $0 \in I$. Thus I is non-empty. Suppose that i and j are elements of I. Then

$$
\begin{aligned}
(i+j)(x) & =i x+j x \\
& =0+0=0
\end{aligned}
$$

Thus $i+j \in I$ and I is closed under additition. Now suppose that $r \in R$ and $i \in I$. Then

$$
\begin{aligned}
r i(x) & =r(i x) \\
& =r 0 \\
& =0 .
\end{aligned}
$$

Thus $r i \in I$ and I is an ideal. Here is another way to conclude that I is an ideal. Let

$$
\phi: R \longrightarrow \operatorname{Hom}_{R}(M, M)
$$

be the natural map which sends an element R to the R-linear map, $m \longrightarrow r m$. It is easy to see that ϕ is R-linear. Replacing M by the module generated by X, note that an element $r \in R$ is in I if and only if $\phi(r)$ is the zero map. Thus I is the kernel of ϕ. It also follows that I is also the annihilator of $\langle X\rangle$.

