9. NORMAL AND SEPARABLE EXTENSIONS

Now we turn to the question, given a field extension, when is there
some polynomial for which it is a splitting field?

Definition 9.1. Let L/K be an algebraic field extension. We say that
L/K is normal if given any irreducible polynomial f(z) € Klz]| such
that f(x) has at least one root in L then f(x) splits in L.

Proposition 9.2. Let L/K be a field extension.
Then L/ K is a finite normal extension if and only if it is the splitting
field of some polynomial f(z) € K|x].

Proof. Suppose that L/K is normal and finite. Pick oy, as, ..., a, such
that

L=K(a,a,...,a,).

Let m;(z) be the minimum polynomial of ;. Then m;(z) splits over
L, as L/K is normal. Thus f(z), the product of all the polynomials
m;(z), splits over L/ K. Tt follows that L/K is a splitting field for f(z).

Now suppose that L/K is the splitting field for some polynomial
f(x). Pick a monic irreducible polynomial m(x) with a root a in L (so
that in fact m(z) is the minimum polynomial of o over K). Let M/L
be a splitting field for m(x) € L[z]. It suffices to prove that L = M.

Pick any root f € M of m(z). We have to prove that § € L.
Consider the following lattice of inclusions,

RN

L(e) L(B)

N
N

K(a)

Observe first that the extensions K («)/K and K (5)/K are isomorphic,

as a and [ have the same minimal polynomial. Similarly note that the
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extensions L(«)/K(a) and L(B)/K(B) are isomorphic, as both exten-
sions are splitting fields for f(z). It follows, by the tower law, that

[L(a) - K] = [L(P) : K].
But by the tower Law again,
[L(a) : K] = [L(e) - L][L - K] and  [L(B) : K] = [L(B) : L][L: K],

so that
[La) = L} = [L(B) : L].
As a € L, the LHS is one. But then g € L as required. U

We note one rather easy consequence of (9.2]),

Lemma 9.3. Let L/K be a finite normal extension and let M be an
intermediary field.
Then L/M is normal.

Proof. By (9.2), L/K is the splitting field for some polynomial f(z) €
K{z|. But then L/M is a splitting field for the same polynomial and
again by it follows that L/M is normal.

Alternatively we could just prove this directly. Suppose that o € L
is a root of f(x) € M|z] an irreducible polynomial. Let m(z) be the
minimum polynomial of o over K. Then f(z) divides m(x) in M|z].
As m(z) splits in L, then so does f(x). O

Definition 9.4. Let L/K be a field extension.

A normal closure for L/K is a field N/L such that N/K is nor-
mal, and there are no proper intermediary fields, between N and L,
with this property.

Lemma 9.5. Let L/K be a finite extension.
Then a normal closure for L/ K ezists and any two such are isomor-
phic over L.

Proof. Let ay, as, ..., «, generate L/ K. Let N/L be a splitting field for
the product of the minimum polynomials. Then N/L is a splitting field
for the same polynomial, so that N/K is normal. But clearly any other
normal closure must be a splitting field for the same polynomials. [J

Example 9.6. Consider the field extension L = Q(a)/Q = K, where

a is a real cube root of 2. This extension is not normal. Indeed the

manimum polynomial of a is x*—2 € Q[z]. But 23—2 certainly does not

split in this field, as the other two roots of this polynomial, considered
as elements of C, are not even real.

In particular L/ K is not the splitting field for any polynomial. Now

suppose N/K is a normal closure for L/K. Then N/K is normal and
2



L is an intermediary field. Even though N/L is normal, in fact L/ K
18 not.

In Galois Theory, the main idea is to relate the structure of the in-
termediate fields to the group of automorphisms of the field extension.
In practice the main issue is to establish that there are enough auto-
morphisms to start with. In turn the only issue is to show that there
are enough roots.

Definition 9.7. Let K be a field and let m(zx) € K|x] be an irreducible
polynomial.

We say that m(x) is separable if m(x) does not have any repeated
roots in a splitting field. We say that an arbitrary polynomial is sep-
arable, if every irreducible factor is separable.

Let L/K be a field extension. We say that L/K is a separable
extension, if the minimum polynomial of every element of L is sepa-
rable.

Definition 9.8. Let R be a commutative ring. The formal deriva-
tive is a function
D: R[z] — R|[z]
such that if f(z) € R|x], with
f(x) = apa™ + ap_12" ' + -+ a,
then f'(x) = D(f(x)), the formal derivative of f(x), is defined as

fl(x) = na,2™ '+ (n — Dap_12" 2 + .. .ay.

Lemma 9.9. The formal derivative is an R-linear map (considering
R[x] as a module over R, by restriction of scalars) which satisfies Leib-
niz’s rule, that 1is,

D(fg) = D(f)g+ fD(g).

Further iof we are given a ring homomorphism ¢: R — S, then the
formal derivative S|x] — Slx| is nothing but the map obtained by
extending scalars.

Proof. Linearity is easy to check. Now consider the equation

D(fg) = D(f)g + fD(g).

Fixing g, note that both sides are linear functions R[z] — R|x], of f.
Indeed the LHS is the composition of the two linear maps, multiplica-
tion by g and D, and composition of linear maps, is linear. Similarly
the RHS is a sum of two linear maps, where one map is the composi-

tion the other way. As R[z] is freely generated by the powers of z, we
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may as well suppose that f(z) = 2. Similarly we may suppose that
g(x) = 2™ In this case the LHS is

D(z™™) = (m + n)a™t"
and the RHS is
D(x™)z™ + 2™ D(2") = (ma™ Ha"™ + 2™ (na™ )
= (m +n)a™ "L

as required.
The last statement is clear, since both functions are linear and have
the same effect on 2. O

Lemma 9.10. Let f(x) be a polynomial over K. Then f has a repeated
root if and only if f(x) and f'(x) have a common zero in some splitting

field.

Proof. By the last statement of (9.9)), passing to a splitting field of
f(z), we may as well suppose that f(z) splits in K.

Suppose that f(x) has a repeated root. Then f(x) = (z — «a)?¢g(x),
for some polynomial g(x). In this case,

f'(2) = 2(z — a)g(x) + (z — a)*g(2),

so that « is a common root of f(x) and f'(x).

Now suppose that « is a common root of f(z) and f’(z). Then we
may write

f(@) = (= a)g(x),
so that
f'(x) = g(z) + (z — a)g'(x).

Thus o must be a root of g(x). But then x — « divides g(x) and « is
a repeated root of f(z). O

Lemma 9.11. Let m(z) € Klx] be an irreducible polynomial over a
field K.

Then m(z) has a repeated root if and only if m'(x) = 0.

In particular m(z) is inseparable if and only if

m(x) = Z a;x?",

where p is the characteristic.

Proof. There is no harm in assuming that m(z) is monic. By

m(z) has a repeated root if and only if m(z) and m’(x) have a common

root . As m(x) is irreducible, it follows that m(z) is he minimum

polynomial of o and so m(z) divides m/(z). As m/(z) has degree one

less than m(x), m/(x) = 0. O
4



Proposition 9.12. Let L/K be a finite field extension.
If L/K is not separable then [L : K| is divisible by the characteristic.
In particular every field extension in characteristic zero is separable.

Proof. Pick a € L such that m(z), the minimum polynomial of «, is
inseparable. By (9.11)) m has degree a multiple of p. In particular p
divides divide the LHS of

[L: K]=[L: K(a)][K(a): K]
at it divides the RHS. U
Definition-Lemma 9.13. [, denotes the unique field of order q, where
q is a power of a prime.

Proof. Suppose that F'is a finite field of order ¢ = p". Then by (8.13) L
is the splitting field of 2¢—x. It follows that F'is unique, by uniqueness
of the splitting field.

Now we turn to existence. Let F' be the splitting field of 27 — x. As

D(x? —z)=qz¥t —1=~1

has no zeroes whatsoever, it certainly has no zeroes in common with
29 — x. Thus 27 — z has ¢ distinct zeroes in F' and so F' has at least ¢
elements. But we have already seen that this implies that F' has order
q. 0

Example 9.14. Let L = F,(t) and let K be the subfield F,(t?) = F,(s),
where s = tP.

Then L/K is a primitive extension, generated by ¢. Consider the
polynomial
m(z) =af — s € K|x].
Then ¢ is a root of m(z). On the other hand, we have

Thus if we can show that m(z) is irreducible, it would follow that
the extension L/K is inseparable of degree p. This follows easily from
the result below.

Theorem 9.15 (Einstein’s Criteria: Bis). Let
f(@) = an@™ + ap_13"' + - + ap € Rlz] = F,s][z],

be a polynomial, and fix an irreducible polynomial p = p(s) € R. Sup-
pose that p does not divide the leading coefficient a,, of f(x), but it does

divide the rest, whilst p* does not divide ay.
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Then f(x) € K|x] = F,(s)[x] is irreducible.

Proof. We first apply Gauss’ Lemma. If we let R = IF,[s] then the field
of fractions of R is K. As f(x) € R[z], Gauss’ Lemma informs us that
it is sufficient to prove that f(z) is irreducible in R[x].

Suppose not. Then we could find g(x) and h(z) € R[x] such that

f(z) = g(z)h(z).
Suppose that
g(x) = b +b_ 2= by and h(z) = cmx™ +Cm12™ - o
Let
R— R/{p) =F,
denote reduction modulo p. As R is the polynomial ring over a field
and p is irreducible, we have already seen that F'is a field. In fact F'is
also finite, of characteristic p, so in fact it is isomorphic to F,, where ¢
is a power of a prime. We will not need this.
As with the proof of Eisenstein’s criteria, this map determines, by
the universal property of a polynomial ring, a map
In both maps, reduction modulo p, is denoted by a bar. We have
" =m(x)
= f(2)g(=).

As Flz] is a UFD and z € F[z] is prime, in fact f(z) = 2! and g(z) =
™. But then by = & = 0. Thus p divides both by and cy. But then p?
divides ap = boCO.
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