8. SPLITTING FIELDS

Definition 8.1. Let K be a field and let f(z) be a polynomial in K|[z].
We say that f(x) splits in K if there are elements ay,ag, ..., a, of K
such that

fl@)y=ANz—a)(z —a)(x —az)...(x — ay).

We say that a field extension L/ K is a splitting field if f(x) splits
in L and there is no proper intermediary subfield M in which f(x)
splits.

Example 8.2. Let f(z) = 2* — 5z + 6. Then Q is a splitting field for
f.
Indeed
f(z) = (z=2)(z =3),
and Q does not contain any proper fields whatsoever, let alone smaller
fields in which f(z) would split.

Example 8.3. Let f(x) = 22 +1 € Q[z]. Then f(x) splits in C, as
f(z) = (x —i)(x +1).

But C is not a splitting field. Indeed f splits inside Q(7), and this
is much smaller than C. In fact this field is a splitting field, almost by
definition.

Example 8.4. Finally consider x% — 2.

Let a = ¥/2, be the unique positive real root, and let w be a primitive
sixth root of unity, so that w® = 1, but no smaller power of w is equal
to one. Then a splitting field is given by

Q(a,w).
Indeed the six roots of 2% — 2 are a, wa, w?a, w3, wie and Wia. Tt

follows that 2% — 2 does split in this field. On the other hand, we must
include o and
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wa

w=—.
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Lemma 8.5. Let f(x) € K[x] and suppose that L/K is an extension
of K over which f(x) splits,
flz)=(r—a)(z—ag)(x —az)...(x — ay),
where aq, s, ..., 0, € L.
Then M = K (a1, s, ...,qy) is a splitting field of f.

Proof. Clear. U



Lemma 8.6. Let f(z) € K[x] be a polynomial.
Then f(x) has a splitting field.

Proof. By ({8.5)) it suffices to find a field extension L/K in which f(x)
splits. The proof is by induction on the degree d of f(z). If d = 1,
then f(x) is a linear polynomial,

ar +b=a(r — ),

where o = —b/a € K. Thus K/K is a splitting field for f in this case.
Now suppose that the result is true for any field extension of degree
less than n.
Suppose that f(z) is irreducible. In this case f(z) is also prime, as
K[z] is a UFD. But then (f(x)) is a prime ideal and the quotient ring

K|z
(f(x))

is in fact a field L, an extension of K. Further if o denotes the left
coset  + (f(x)), then L = K(a), and « is a root of f(x). Thus we
may factor f(z) as

f(@) = (r = a)g(z),
where g(x) € L[x] has degree n — 1.

Replacing K by L we may assume that f(x) is reducible. Suppose
that

f(x) = g(z)h(z),
where both ¢g(z) and h(z) have degree at least one. We proceed in two
steps. First we find a field extension, M /K in which g(x) splits. Then
we find a field extension L/M for which h(z) splits. It is clear that we

are able to do this, as both g(x) and h(x) have degree smaller than n.
In this case f(z) clearly splits in L/K. O

Now we know that splitting fields exist, we turn to the problem
of showing that they are unique. At this point there arises a small
problem. The idea is to apply the same argument as the one above.
The problem is that when we carry out our inductive step, in the case
that f(x) is reducible, we will have two intermediate field extensions
M/K and M'/K. We then we want to argue that L/M and L'/M' are
isomorphic extensions. In fact we want to slightly enlarge our notion
of two isomorphic field extensions.

Definition 8.7. The category of field extensions has as objects field

extensions L/K and as morphisms between objects L/K and L'/K’
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pairs of ring homomorphisms ¢: K — K’ and ¢: L — L’ such that
the following diagram commutes,

LY.

|, |

K2+ K
Of course, once we have a category, we have a notion of isomorphism,;
this translates to the condition that both ¢ and v are isomorphisms.

Lemma 8.8. Let L/K be a primitive field extension, where a € L.
Suppose we are given a ring homomorphism ¢: K — K’ and a field
extension L' /K'. Suppose € L'.

Then we may find a ring homomorphism : L — L' extending ¢
which sends o to [, if and only if B is a root of the image of the
minimum polynomial of a.

Proof. One direction is clear. Suppose that we can find such a ). Then

Now suppose that the converse is true. We may as well suppose that
L' = K'(B). Then
!/
K g e K
(ma(z)) (mg(x))
But as S is aroot of ¢(m,(x)), it follows that mg(x) divides ¢p(mq(x)).
Define a ring homomorphism

L~

K'[z]
(mg(x))
as the composition of the ring homomorphism

Klz] — K'[x]

f: Klzx] —

whose existence is guaranteed by the universal property of a polynomial
ring, and the canonical projection,
K'[x]
(mg(x))
We have already seen that m,(z) is in the kernel I of f, so that

(my(x)) € I. Thus by the universal property of the quotient map,
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there is an induced map

Kla] K'[x]
ma(@)  (mp(@))”

Via the two isomorphisms above, this induces a ring homomorphism

W L — L
which extends ¢ and sends « (corresponding to z + (m,(x))) to 8. O

Lemma 8.9. Suppose we are given a ring homomorphism ¢: K —
K'. Let f(x) € Klz| be a polynomial and let f'(x) be the correspond-
ing polynomial in K'[x]. Let L/K be a splitting field for f(z) and let
L'/K' be a field in which f'(x) splits. Then there is an induced mor-
phism (¢,1)), in the category of field extensions, that is, there is a ring
homomorphism ) : L — L' such that the following diagram commutes,

LY.

|

K. K

If further ¢ is an isomorphism and L' /K’ is a splitting field for f'(x),
then so is .

Proof. The proof proceeds by induction on the degree n of the field
extension L/K. If the degree is one, then there is nothing to prove, as
in this case L = K and we make take ¢ = ¢.

So suppose that the result is true for any field extension of degree
less than n. Pick a root o € L of f(x), which is not in K. Let m(z)
be the minimum polynomial of a. Then m(z) divides f(x), as « is a
root of f(z). Let m/(z) € K'[x] be the polynomial corresponding to
m(zx). As f'(z) splits in L', it follows that there is an element € L/,
which is a root of m/(z). By we may find a ring homomorphism
7 extending ¢,

™

K(a) — K'(f)

K. K
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As [K(a) : K| > 1, it follows by the Tower Law that [L : K(a)] < [L :
K]. By induction, we can find 1 extending T,

LY .

L]

K(a) =~ K'(B).
Since 1 extends m and 7 extends ¢, it follows that ¢ extends ¢, as
required.
Now suppose that L'/ K’ is a splitting field for f'(x) and that ¢ is an

isomorphism. As ¢ is a ring homomorphism between fields, it follows
that v is injective. It follows that

[L:K]<[L:K'.

Replacing ¢ by its inverse, by symmetry we also get
IL': K'|<|[L:K].
Thus
[L:K]=I[L": K.
But any linear injective map between two finite dimensional vector

spaces of the same dimension is automatically a bijection, so that v is
in fact an isomorphism. O

We can use the result above to give a complete description of finite
fields. First a couple of useful results.

Definition 8.10. Let G be a group. The exponent of G is the least
common multiple of the orders of the elements of G.

Lemma 8.11. Let G be a finite abelian group of order n.
Then G has an element of order the exponent m of G. In particular
m = n if and only if G is cyclic.

Proof. By the classification of finitely generated abelian groups, we may
find integers my, ms, ..., my such that

G = Ly X Lipy X ==+ X Ly,

where m; divides m;,;. In this case m = m; and so it is clear that
there are elements of order m =. ]

Lemma 8.12. Let G be a finite subgroup of the multiplicative group of
a field F'.
Then G 1is cyclic.



Proof. Let m be the exponent of G and let n be the order of G. Now
G is abelian as F'is a field. Thus m < n and for every element « of G,
a™ =1, so that every element of GG is a root of the polynomial

™ —1¢€ Flz].

But a polynomial of degree m has at most m roots, and so n < m. But
then m = n and G is cyclic. O

Theorem 8.13. Let L be a finite field of order ¢ = p™.

Then the elements of L are the q roots of the polynomial x? — x. In
particular L s the splitting field of the polynomial x4 — x. Furthermore
there is an element o € L such that L = F)(«).

Proof. Let GG be the set of non-zero elements of L. Then G is a finite
subgroup of the multiplicative group. Thus the elements of G are
precisely the ¢ — 1 roots of the polynomial

7t — 1.
Thus the elements of L are indeed the roots of the polynomial
x? —x.

Let a be a generator of the cyclic group G. Then G = («), so that
certainly L = F(«). O
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