4. SYMMETRIC AND ALTERNATING PRODUCTS

We want to introduce some variations on the theme of tensor prod-
ucts.

The idea is that one can require a bilinear map to be either symmetric
or alternating.

Definition 4.1. Let M and P be two R-modules and let
fTMxM—P

be a bilinear map. We say that f is symmetric if

fm,n) = f(n,m).
We say that f is alternating if

f(m7 n) = _f(n7m)'

Definition 4.2. Let M be an R-module. The symmetric product
of M with itself, denoted Sym?> M, is an R-module, together with a
symmetric bilinear map

w: M x M — Sym? M,

which is universal amongst all symmetric bilinear maps, in the follow-
ing sense: let
f:MxM— P,

be any other symmetric bilinear map. Then there is a unique induced
R-linear map
¢: Sym*> M — P,

which makes the following diagram commute

MxM-L.p

Sym? M .

For the usual reasons, the symmetric product is unique, up to unique
isomorphism, if it exists at all. Note also that there is an R-linear map

M ® M — Sym? M,
R

whose existence is guaranteed by the universal property of the tensor
product, once again given that the symmetric product exists at all.
This suggests that the construction of the symmetric product goes
along the same lines as the tensor product, except that one introduces

more relations.
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Lemma 4.3. Let M be an R-module.
Then the symmetric product exists.

Proof. Let F be the free module with generators every element of M x
M, and let G' be the submodule generated by G (that is all the old
relations) union the extra relations

(m,n) — (n,m).

Define the symmetric product to be the quotient F/G’. It is left as
an exercise to the reader to check that this is indeed the symmetric
product. 0

Definition 4.4. Let M be an R-module. The wedge product of
M with itself, denoted /\2 M, is an R-module, together with a skew-
symmetric map
2
u: M x M — \M

which is universal amongst all such skew-symmetric bilinear map in the
following sense: given any skew-symmetric bilinear map

fiMxM—P

there is a unique R-linear map
2

¢: \M — P,
which makes the standard diagram commute.

Uniqueness follows by the standard arguments; existence parrallels
the construction of the symmetric product, the only difference being
that we throw in the generators

(m,n) + (n,m)
instead of
(m7 n) - (na m)
In both cases, it is customary to employ notation for the image of
(m,n). In the case of the symmetric product, we have

m-n
which is subject to the rule
m-n=mn-m.
In the case of the wedge product,

mAn=—mAn.
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Note that if 2 is invertible in R, then
mAm =0.

Perhaps one of the most interesting uses of the symmetric and alter-
nating product, is in the case of vector spaces. If V' is a vector space
over a field, not of characteristic two, and ey, es, ..., €, is a basis for V,
then

€; €j
is a basis for Sym2 V, where 1 <17 <7 <nand
e; N\ €

is a basis for /\2 V, where 1 < i < j < n. In particular A2V has

dimension
n
5 )
Definition 4.5. Let

f: My x My x---xXxMy— N

be a map. We say that f is multilinear if it is linear in each variable.

If My = My = -+ = My, and f is invariant (respectively changes
sign) whenever two coordinates are switched, then we say that f is
symmetric (respectively alternating).

There are correspondingly three associated universal objects. The
first is in fact isomorphic to the tensor product of My, My, ..., My (note
that since the tensor product is an associative operation, in fact it
makes sense to talk about the d-fold product, without specifying an
order). The second and third are Sym? M and A M.

Definition 4.6. Let M be an R-module and let ¢: M — N be an
R-linear map. Let f be the composition of the natural map

Q"M XMX---XM-—NXNX---xN
and
u:NxNx---xN—>/\N.

Then f is alternating bilinear. By the universal property of N" M,
there 1s an induced R-linear map,
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Put differently, there is a covariant functor F' from the category of
R-modules to itself, which associates to any module M, the module
A" M.

Note one interesting thing about the construction of A"¢. Suppose
that we go back to the case of a vector space V. If V' has dimension n,
then in fact A’V has dimension

n

)
In particular if i = n, then A’V is a one dimensional vector space, with
basis

Ul/\UQ/\"'/\Un7

if v1,v9,...,v, is a basis of V. So

n n n
No: NV — \V
is a map between one dimensional vector spaces. Now any such map is

determined by a scalar. Indeed if W is a one-dimensional vector space
and w is any non-zero vector in W, and ¢ is any linear map, then

Y(w) = aw,
and it is easy to see that a is independent of w.

Definition 4.7. Let V' be a vector space of dimension n and let ¢ be
a linear map. Let a € F be the unique scalar such that \" ¢ is simply
multiplication by a. Then a is called the determinant of ¢ and is
denoted det ¢.

Example 4.8. Let V' be a two dimensional vector space and let ¢ be a
linear map. Let us compute the determinant in this case.

Pick a basis v and w for V. Then a basis of AV is v A w. Now
expand ¢ in terms of this basis.
Suppose that

o(v) = av + bw
and
d(w) = cv + dw.
In other words suppose that the matrix of ¢ in the basis v and w is
(« )
c d)’
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Then
Ap(v Aw) = (av + bw) A (cv + dw)
= av A (cv + dw) + bw A (cv + dw)
= ac(v Av) + ad(v Aw) + be(w A v) + bd(w A w)
= ad(v A w) — be(v A w)
= (ad — be)(v A w)
= det(¢)(v A w).

Lemma 4.9. Let M, N and P be three R-modules and let ¢: M — N
and p: N — P be two R-linear maps

Then A"(¢ o ) = A"(¢) o A" (¥).
Proof. Easy. -

In fact, this just says we have a functor.

Proposition 4.10. Let V' be a vector space of dimension n and let ¢
and v be two linear maps.
Then det(v) o ¢) = det(v)) det(¢).

Proof. Easy consequence of (4.9)) and the definition of the determinant.
O

Lemma 4.11. Let V' be a vector space over a field F', of characteristic
not equal to two.
Then there is a canonical isomorphism

2
VeV ~Sym?Vae \V.
Proof. Let U be the vector subspace of V® V' generated by the vectors

VRW+wR .

I claim that U is isomorphic to Sym? V. Indeed define a map V x V to
U by sending (v, w) to v ® w + w ® v. It is easy to see that this map
is symmetric bilinear. Thus there is an induced R-linear map

Sym?V — U.

It is easy to see that this map is both surjective. Thus it is an isomor-
phism, since both sides have the same dimension.
Similarly let W be the vector subspace generated by elements of the
form
VRW—wR.
It is easy to show that this is isomorphic to A*V (identifying v A w

withv Q@ w —w Q v.
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On the other hand, W and U span the whole of V ® V. We have
20Rw)=Vew+wev)+ (VOw—wev).

So that 2(v®w) is in the span of U and W. As 2 is invertible, it follows
that v ® w is in the span, so that U and W span V ® V. As they have
complimentary dimension, the result follows. 0
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