15. CuBics, QUARTICS AND POLYGONS

It is interesting to chase through the arguments of §14 and see how
this affects solving polynomial equations in specific examples. We make
a global assumption that the characteristic is neither 2 nor 3.

Lemma 15.1. Let f(z) € K[z] be a separable polynomial of degree n.
Then the Galois group is a subgroup of S,, the permutations of the
T001S.

Proof. Clear, since any automorphism of a splitting field is determined
by its action on the roots. U

Now A,, C S, and so H = GNA, C G is either equal to G or of index
two. If we have the latter, by the Fundamental Theorem, it follows that
there is a quadratic extension M /K. Since this is universally true, no
matter which field we start with, we might well expect that there is
some universal formula which determines M.

Definition 15.2. Let f(z) € K|x] be a polynomial, in which f(x) splits
as

fl@)=ANz—a)(z—az)...(x — a).

The discriminant A is the square of the product

o= H(O‘i — o).

1<j

Lemma 15.3. Let f(x) € Klz]| be a polynomial with splitting field
L/K and discriminant A € L.

Then A € K and A = 0 if and only if f(x) has a repeated root.
Moreover if A # 0 then x? — A splits in K[| if and only if the Galois
group 1s a subgroup of A,,.

Proof. The second statement is immediate. If A # 0, then f(z) is
surely separable and so L/K is Galois.

We already know that ¢ is invariant under the action of A,, and that
an arbitrary element of S,, fixes § up to sign. Thus A = §2 lies in the
fixed field of G, which by the Fundamental Theorem of Galois Theory
is equal to K.

Finally 22 — A splits in K if and only if 6 € K if and only if ¢ is
invariant under G if and only if G C A,. O

We turn to the calculation of the discriminant.
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Definition 15.4. Let K be a field and let A\, o, ..., A\, be n scalars.
The determinant

1 1 1 1
)\1 )\2 )\3 )\n
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Aot ot L et

1s known as the Vandermonde determinant.

Lemma 15.5. The Vandermonde determinant is equal to

1 1 1 . 1
A1 Ag A3 ... A,
AN A =TT M)
: : : - : i<j

DU LD VD

Proof. First note that we may replace \; by the variable x;. In this
case both sides are polynomials in x1,xs,..., 2, and so both sides are
elements of the ring R = Klzy,x9,...,2,|. By unique factorisation
and considerations of degree it suffices to check that x; — x; is a factor
of the LHS and that the constant coefficients match up. The latter is
an easy check.

To check that x; — z; divides the LHS, it suffices to check that the
LHS vanishes when A\; = A;. But this is clear, as then we are taking
the determinant of a matrix with two equal columns. O

Remark 15.6. The Vandermonde determinant provides a slick way of
checking that A, is a normal subgroup. The key point to check is that a
transposition, acting on &, switches the sign. But this is clear, looking
at the LHS, since the determinant changes sign, when one switches two

columnes.
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where we used the fact that taking transposes does not affect the de-
terminant.

The last product can be computed by first multiplying the matrices
together and then computing the determinant, as

det(AB) = det Adet B.

Rather than write down the general formula, it is perhaps more
interesting to compute in some relatively simple cases.
If n =2 we get

1 1 1 o) [ 2 a+p
a B)\1 B) \a+p a®>+p%)"

f)=2*+ar+b= (v —a)(z - B).

Suppose

Multiplying out we get

(x—a)(x—pB) =2 (a+ B)r+af
=2 +ax +0,

so that comparing coefficients, we have

a+p=—a and af =b.
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a* = (a+B)’
=ao’+ 3%+ 208
= (a® + ) + 2b.
So
a? + 4% =a® — 20.
Thus A is equal to

‘2 —a

o2 _opy 2 2
4 a2_2b‘—2(a 2b) — a® = a” — 4b,

which should look familiar.
One can make a similar computation for cubics. In this case we have

Proposition 15.7. Let f(x) € K|z| be an irreducible cubic.
Then the Galois group is isomorphic to As if % — A splits in K and
s equal to S3 otherwise.

Proof. The Galois group is a transitive subgroup of Ss, of which there
are only two, Az and S3. But G C Aj if and only if 2> — A splits in
K. O

This gives us a method to solve the cubic. First compute the inter-
mediate field M corresponding to As, that is, adjoin the square root of
A. The resulting field extension L/M has Galois group isomorphic to
Zs, thus there ought to be an expression involving ¢ and the coefficients
of the cubic, for which we need to take a cube root.

We now apply a similar technique for quartics.

Proposition 15.8. Let f(x) € K[z| be an irreducible quartic.
Then the Galois group is isomorphic to one of
(1) 54?
(2) D47
(3) Z4
(4) A4; or
The latter two occur if and only if x* — A splits in K.

Proof. These are only the only transitive subgroups of Sy. O

Once again, this ought to yield a method to solve the quartic. First
adjoin 0, the square root of A, to reduce the Galois group to A4. Now
use the fact that V' C A4 is a normal subgroup, with quotient Zs, to

find a further field extension, that is obtained by adjoining appropriate
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cube roots. This reduces the Galois group to Zs X Zsy. The remaining
field extension is obtained by adjoining successive square roots.

Thus the general form of a solution to a quartic equation, involves
taking square roots and cube roots only. In practice determining these
formulas is somewhat involved and uninspiring. A much more inter-
esting question is to determine those regular polygons which are con-
structible.

Lemma 15.9. The regular n-gon is constructible if and only if the
angle %’T 15 constructible.

Proof. Suppose the regular n-gon is constructible. Then the angle sub-
tended at the centre of the n-gon (which is surely constructible) by two
adjacent vertices is 27”

Conversely suppose we can construct the angle 27” Then we can

construct the angles

27
a—.
n
Place points on the unit circle with the above angles and simply join
up the points. O

Lemma 15.10. If the regular polygon with nm sides is constructible
then the regular polygons with n sides and m sides are constructible.
Further if m and n are coprime, the converse holds.

Proof. One direction is clear. If you can construct the regular polygon
with nm sides, then you can certainly construct the regular polygon
with n and m sides.

Now suppose that m and n are coprime. Then there are integers a
and b such that

= am + bn,

so that
1 a b

mn n m
By assumption we can construct the angles

2—7T and 2—7T,
n m
and so we can construct
27 27 2T
mn ' n om
But then the mn-gon is contructible. 0
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Using , to answer the question of which n-gons are constructible,
we only need to consider the case when n is a power of a prime. Since
we can bisect any angle, we can certainly construct any 2¥-gon.

Now constructing the angle 27 /n is basically the same as showing
that a primitive nth root of unity has degree a power of two over Q.

Lemma 15.11. The angle 6 = 27 /n is contructible if and only if the
degree of the mininum polynomial of w = e*™/™ is a power of two.

Proof. The angle 6 is constructible if and only if the lengths o = cos 6
and sin @ are constructible. So if the angle 6 is constructible, then the
degree of the minimum polynomial of « is a power of two. Now

W+ w = 2a.

As 0 = w™!, we have
w? — 2w +1=0.

So w is a root of the polynomial
2® —2ar +1 € Q(a)[].

Thus the degree of w over Q(«) is either one or two. Now apply the
Tower Law. 0

Note that w is a primitive root of unity.

Lemma 15.12. Let w be a primitive p*-th root of unity, where p is an
odd prime.
If w has degree a power of two over Q then k =1 and p = 2° + 1,
for some s.
Proof.
y(z) =Pt 2P P4 4 1

So the degree of w, in the case k =1, is

p—1.
As this is a power of two, we have p = 2° + 1.
Now if £ > 1, we may as well assume that k = 2. Now
2 =1 = Oy (2)®,(x) P2 ().
So
PP=1+@p-1)+d,

where d is the degree of w. Thus d = p?> —p = p(p — 1), which is never

a power of two. O
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Lemma 15.13. Let p be a prime of the form
2° 4+ 1.
Then s is a power of two.
Proof. Suppose not. Then we could write s = ab, where a is odd. Now
1= (r+ D) -2 4.
But then
p=(2")"+1,
would not be prime. U

Theorem 15.14. The reqular n-gon is constructible if and only if

n = ka1>p27 -~y Pm,
where py,pa, ..., Pm are distinct odd primes of the form 22" 4 1.
Proof. By what we have already proved, it suffices to consider the case
n is an odd prime, of the form 22" 4 1, and we only need to prove that
the corresponding angle is constructible.

Consider the Galois group G of ™ — 1. This is abelian, isomorphic
to U,.r. The order of this group is

22k i 22k—1 _ 22’€—1
a power of two. Thus G is a 2-group and we can filter a splitting field

Q(w)/Q by intermediary fields, all of which are quadratic extensions
of the previous field. Thus we can do the same for the subfields,

Q(cos ) and  Q(sin#).

But then cos 6 and sin # are constructible, which is what we want. [
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