
14. Solvability by Radicals

Proposition 14.1. Let L/K be the splitting field of the polynomial
xn − a ∈ K[x], where n is coprime to the characteristic.

Then the Galois group G is solvable.

Proof. Let L/M/K be a splitting field for xn − 1, and let H be the
corresponding subgroup of G. Then H is the Galois group of L/M , H
is normal in G and G/H is the Galois group of M/K. We have already
seen that G/H is abelian. Thus it suffices to prove that H is solvable.

In particular we may assume that xn − 1 splits in K. Suppose that
n = lm. Let L/M/K be a splitting field for xm − a. Then M/K is
normal, so that the corresponding subgroup H of G is normal as well.
The extension L/M is a splitting field for xl − b, where bm = a. As

0 −→ H −→ G −→ G/H −→ 0,

is a short exact sequence, and the two extreme groups are the Galois
groups for xl − b and xm − a, we reduce to the case when n is prime.

Thus we may assume that xn − a is irreducible, in which case G is
abelian. �

Definition 14.2. Let f(x) ∈ K[x] be a polynomial.
We say that f(x) is solvable by radicals if there is a tower of

extensions

K = R0 ⊂ R1 ⊂ R2 ⊂ Rn,

such that Ri = Ri−1(αi), where ai = αmi
i ∈ Ri−1 for some mi coprime

to the characteristic and f(x) splits in Rn.

Lemma 14.3. Suppose that f(x) ∈ K[x] is solvable by radicals.
Then we may find a tower as in (14.2) such that Rm/K is Galois

for all 1 ≤ m ≤ n.

Proof. We have

K = S0 ⊂ S1 ⊂ S2 ⊂ Sn,

such that Si = Si−1(αi), where ai = αmi
i ∈ Si−1 for some mi coprime

to the characteristic and f(x) splits in Sn.
Let R1 be a splitting field for xm1−a1. Clearly S1 is (isomorphic to)

a subset of R1. Then R1 contains a splitting field for xn − 1, M1 and
the two extensions R1/M1 and M1/K are radical.

Now consider the polynomial xm2 − a2. Then a2 ∈ R1 but unfortu-
nately not necessarily in K. On the other hand,∏

φ∈G

(xm2 − φ(a2)),
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is invariant under the action of the Galois group G of R1/K and so
lies in K[x]. Let R2/R1 be a splitting field extension. Then R2/K is
Galois and clearly R2/K is a succession of radical extensions.

Continuing in this way, the result is clear by induction. �

Lemma 14.4. Let L/K be a finite field extension and suppose that
L/M/K and L/N/K are two intermediary fields such that L is the
field generated by M and N . Suppose that M/K is Galois with Galois
group G.

Then L/N is Galois, with Galois group I isomorphic to

H = Gal(M/M ∩N) ⊂ G.

Proof. Suppose that M/K is the splitting field of f(x). Then so is L/N
and f(x) is separable. In particular L/N is Galois.

Suppose we are given an element σ of I. Then σ is an automorphism
of L/K. As M/K is normal, σ|M is an automorphism of M/K. Thus
there is a group homomorphism

ρ : I −→ G.

Let α1, α2, . . . , αn be the roots of f(x). Now ρ(σ) is the identity map
if and only if its action on the roots is the identity. But then σ is the
identity as well. It follows that ρ is injective. Clearly ρ(σ) fixes M ∩N ,
so that the image of ρ is a subgroup of H. On the other hand, if α /∈ N ,
then there is a σ that does not fix α. Thus the fixed field of the image
is contained in M ∩N . �

Theorem 14.5. Let f(x) ∈ K[x] be a separable polynomial, whose
Galois group G has order n, which is coprime to the characteristic.

Then f(x) is solvable by radicals if and only if the Galois group of
f(x) is solvable.

Proof. Suppose that the Galois groups is solvable. Let K̄ be the alge-
braic closure of K. Let L′/K be a field extension obtained by adjoining
nth roots of unity, and let N be the smallest subfield of K̄ that contains
both L and L′. Then L′/K is a radical extension and the extension
N/L′ is isomorphic to a subgroup of G.

So we may as well assume that xn − 1 splits in K. As G is solvable,
we may find a sequence of subgroups, each of which is normal in the
next, with quotient a cyclic group of prime order. Thus we may find a
sequence of extensions,

K = R0 ⊂ R1 ⊂ . . . Rn = L,

where Ri/Ri−1 is an extension of degree p = pi a prime, such that xp−1
splits in K. We have already seen that then Ri/Ri−1 is the splitting
field for xp − a, for some a ∈ Ri−1.
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Now suppose that f(x) is solvable by radicals. Let L/K be a splitting
field for f(x) and let N/L be an extension of K, which is a succesion
of radical extensions, Galois over K. Then the Galois group of N/K
is solvable and G is a quotient of a solvable group, whence it is itself
solvable. �

Lemma 14.6. Let f(x) be a rational irreducible polynomial of prime
degree p with exactly two roots that are not real.

Then the Galois group G of f(x) over K = Q is Sp, the full sym-
metric group.

Proof. The action of the Galois group is determined by its action on
the roots. The only thing to check is that we get the whole of Sp. It
suffices to prove that G contains a p-cycle and a transposition.

Let L/K be a splitting field for f(x). Let α be a root of f(x). Then
M = K(α)/K has degree p. It follows, by the Tower Law, that the
degree of the extension L/K is divisible by p. Thus the Galois group
has order divisible by p and so by Sylow’s Theorem G contains an
element of order p. As G ⊂ Sp, and the only elements of Sp of order p
are p-cycles, so in fact G contains a p-cycle.

On the other hand, as f(x) is a real polynomial, complex conjugation
acts on the roots of f(x). As there are exactly two complex roots,
complex conjugation corresponds to a transposition. �

Corollary 14.7. The polynomial x5−6x+3 is not solvable by radicals.

Proof. It suffices to check that f(x) is irreducible and has three real
roots.

Irreducibility follows from Eisenstein. f(−2) < 0, f(0) = 3, f(1) < 0
and f(2) > 0, so that by the IVT f(x) has at least three real roots. On
the other hand, the real zeroes of f(x) are interspersed with the zeroes
of the derivative f(x) = 5x4 − 6, which has only two real roots. �
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