
13. Radical and Cyclic Extensions

The main purpose of this section is to look at the Galois groups of
xn − a. The first case to consider is a = 1.

Definition 13.1. Let K be a field. An element ω ∈ K is said to be a
primitive nth root of unity if

ωn = 1,

but no smaller power is equal to one.
Let L/K be a field in which xn − 1 splits. The nth cyclotomic

polynomial is defined to be

Φn(x) =
∏
ω

(x− ω),

where the product runs over the primitive nth roots of unity.

Definition 13.2. Let L/K be a Galois extension with Galois group G.
Let α be an element of L. We say that β is a conjugate of α if β

lies in the same orbit as α under the natural action of G.

Lemma 13.3. Let L/K be a Galois extension with Galois group G.
Suppose that f(x) ∈ L[x] splits in L.

Then f(x) ∈ K[x] if and only if the set of roots of f(x) is a union
of orbits of G. Furthermore f(x) is irreducible if and only if the set of
roots is an orbit of G.

In particular if α ∈ L, then the minimum polynomial of α is∏
β

(x− β),

where the product runs over the conjugates of α.

Proof. It suffices to prove that f(x) ∈ K[x] is irreducible if and only if
the set of roots of f(x) is an orbit of G, that is, it suffices to prove the
last statement.

Suppose that

f(x) =
∏
β

(x− β),

where the product runs over the conjugates of α ∈ L. Then f(x) is
invariant under the action of the Galois group, since any element of
the Galois group simply switches the factors and this won’t change the
product. But then each individual coefficient of f(x) is invariant under
every element of G, that is, each coefficient lies in LG = K. Thus
f(x) ∈ K[x].
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On the other hand G acts transitively on the roots of any irreducible
polynomial. �

Lemma 13.4. Φn(x) lies in the groundfield K.

Proof. xn−1 is certainly a polynomial with coefficients in K. Let L/K
be a splitting field, with Galois group G. Now Φn(x) certainly divides
xn − 1 in L. On the other hand, if ω is a primitive nth root of unity,
then the other roots of xn − 1 are simply given as the n powers of ω,

ω, ω2, ω3, . . . , ωn.

Thus L = K(ω). Thus the action of an element φ of G is deter-
mined by its effect on ω. As φ must send ω to another generator, the
conjugates of ω are all primitive roots of unity. Now apply (13.3). �

Lemma 13.5.
xn − 1 =

∏
d|n

Φd(x).

Proof. Easy, since any nth root of unity is a primitive root of unity for
some unique d|n. �

Example 13.6. Φ1(x) = x− 1.

x2 − 1 = Φ1(x)Φ2(x).

Thus Φ2(x) = x + 1 (also clear, since −1 is the unique primitive 2th
root of unity).

x4 − 1 = (x2 − 1)(x2 + 1).

Thus Φ4(x) = x2 + 1.

Lemma 13.7. In characteristic zero, Φn(x) ∈ Z[x] and the content is
one.

Proof. We already know that Φn(x) ∈ Q[x]. On the other hand, by
induction

xn − 1 = Φn(x)f(x)

where, by induction and (13.5), f(x) is integral and the content is one.
The result follows as in the proof of Gauss’ Lemma. �

Definition 13.8. Un denotes the group of units in Z/nZ.

Proposition 13.9. Let K be a field whose characteristic is coprime to
n and let L/K be a splitting field for xn − 1.

Then the Galois group G of L/K is naturally isomorphic to a sub-
group of Un, with equality if and only if Φn(x) is irreducible over K.
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Proof. First note that xn − 1 has no repeated roots, as its derivative
is nxn−1 6= 0. Thus L/K is Galois. Let ω be a primitive nth root of
unity.

Define a map

f : G −→ Un

by sending σ to i, where σ(ω) = ωi. This makes sense, as σ must
permute the roots of xn − 1, and the roots are nothing more than the
powers of ω. On the other hand, ω is a generator of L/K, so that ωi

is also a generator of L/K. Thus ωi is also a primitive root of unity.
Thus i is coprime to n, so that i is a unit modulo n. Further σ is
determined by its action on ω, so that f is injective.

Suppose that f(σ) = i and f(τ) = j. Then σ(ω) = ωi and τ(ω) = ωj.
In this case

(τ ◦ σ)(ω) = τ(σ(ω))

= τ(ωi)

= (τ(ω))i

= (ωj)i

= ωij.

Thus f(τσ) = ij and so f is a group homomorphism. The calculation
above also shows that if we pick another primitive root of unity ωi,
that τ also acts on ωi, by raising to the power j. Thus G is naturally
isomorphic to a subset of Un. Now G = Un if and only if we can move
ω to any other primitive root of unity. But, by (13.3), this is equivalent
to saying that Φn(x) is irreducible. �

Here is the main:

Theorem 13.10. Φn(x) is irreducible over Q.

Proof. Suppose not. Then by Gauss’ Lemma, we may write

Φn(x) = f(x)g(x),

where f(x) and g(x) are monic integral polynomials of non-zero degree
and f(x) is irreducible.

Suppose that ω is a root of f(x). Let p be a prime that does not
divide n. I claim that ωp is a root of f(x). Suppose not. Then ωp is a
root of g(x). But then ω is a root of h(x) = g(xp). Thus f(x) divides
h(x), as f(x) is the minimum polynomial of ω. Thus we have

h(x) = f(x)k(x),
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Now reduce modulo p,

Z −→ Fp.
We get h̄(x) = ḡ(xp) = (ḡ(x))p. Let q be an irreducible factor of
f̄(x) ∈ Fp[x]. Then q divides ḡ(x) and so q2 divides f̄ ḡ = Φ̄n(x). But
then Φ̄n(x) would have repeated roots, a contradiction as n is coprime
to p.

Thus ωp is also a root of f(x). But given any primitive nth root of
unity, we may write it as ωm, for some m coprime to n. In this case

m = p1p2 . . . pk,

for primes p1, p2, . . . , pk coprime to n. Repeating the argument above
k times, we get that ωm is a root of f(x). But then f(x) = Φm(x), a
contradiction. �

Example 13.11. Let us calculate the Galois group of x6 − 1 over Q.
By (13.10) this is isomorphic to U6. Of the numbers, 1, 2, 3, 4, 5,
only 1 and 5 are coprime to 6. Thus the group has order two and is
isomorphic to Z2.

Now we turn to the general problem.

Lemma 13.12. Let L/K be a splitting field for xn − a ∈ K[x], a 6= 0.
Then there is an intermediary field M which is a splitting field for

xn − 1.

Proof. If n = mp and a = bp, where p is the characteristic of K, then

xn − a = (xm − b)p.

Thus we may as well assume that n is coprime to the characteristic. In
particular xn − a has n distinct roots α1, α2, . . . , αn.

Let α and β be two roots of xn − a. Then α/β is a root of xn − 1.
Thus

αi
α1

where 1 ≤ i ≤ n,

are the n distinct roots of xn − 1. �

Lemma 13.13. Let K be a field in which xn − 1 splits and let L/K
be a Galois extension with Galois group G of degree coprime to the
characteristic.

Then L/K is the splitting field of an irreducible polynomial xn− a if
and only if the Galois G has order n.

Proof. Suppose that L/K is the splitting field of xn − a. Let α be a
root of xn− a and let ω ∈ K be a primitive nth root of unity. We have
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already seen that if α is a root of xn − a then the other roots are ζα,
where ζ = ωi is an nth root of unity. Define a map

f : G −→ Zn,
by sending σ to i, where f(α) = ωiα. As α generates L, the action
of σ is determined by its action on α. Thus f is injective. Now the
Galois group is transitive on the roots, as xn − a is irreducible. Thus
f is surjective.

Suppose that σ and τ ∈ G and f(σ) = i and f(τ) = j. Thus
σ(α) = ωiα and τ(α) = ωjα. In this case

(τ ◦ σ)(α) = τ(σ(α))

= τ(ωiα)

= ωiτ(α)

= ωiωjα

= ωi+jα.

Thus f is a group homomorphism and so f is an isomorphism.
Now suppose that G is cyclic, with generator σ. Then the automor-

phisms
1, σ, σ2, . . . , σn−1,

are distinct automorphisms and therefore independent over L. Thus

1 + ωσ + ω2σ2 + · · ·+ ωn−1σn−1 6= 0.

Thus there we may find β ∈ L such that

α = β + ωσ(β) + ω2σ2(β) + · · ·+ ωn−1σn−1(β) 6= 0.

Note that σ(α) = ω−1α. Let a = αn. Then a is invariant under σ,
whence G, so that a ∈ K = LG. Note that G acts transtively on the
roots of xn − a, which are ωiα, so that xn − a is irreducible. Thus α
has degree n over K, so that L = K(α). �

Corollary 13.14. Let xp − a ∈ K[x], where p is a prime number
coprime to the characteristic and suppose that xp − 1 splits in K.

Then either xp − a splits in K or xp − a is irreducible.

Proof. Let L/K be a splitting field for xp − a. Then the Galois group
G is a subgroup of Zp, since if α is a root of xp − a, then the action
of any element of G is to send α to ωiα, where i ∈ Zp as above. Thus
either G is the trivial group, when xp − a splits in K or G = Zp, when
the Galois group acts transitively on the roots of xp − a and xp − a is
irreducible. �
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