
12. The Fundamental Theorem of Galois Theory

Theorem 12.1 (The Fundamental Theorem of Galois Theory). Let
L/K be a finite Galois extension. Then there is an inclusion reversing
bijection between the subgroups of the Galois group Gal(L/K) and in-
termediary subfields L/M/K. Given a subgroup H, let M = LH and
given an intermediary field L/M/K, let H = Gal(L/M).

Proof. This will be an easy consequence of all that has gone before.
Suppose that we are given a subgroup H of G. Let M = LH and

then set K = Gal(L/M). We want to show that K = H. As we have
already proved that

H ⊂ K,

and |G| = [L : K] is finite, it suffices to prove that the cardinality of
K and is at most the cardinality of H. But

|H| = [L : M ],

and there are at most [L : M ] automorphisms of L/M , so that

|K| ≤ [L : M ] = |H|.
Thus H = K, and the composition one way is the identity.

Now suppose that we start with L/M/K. Let H = Gal(L/M) and
let N = LH . We already know that

M ⊂ N,

and so by the Tower Law it suffices to prove that

[L : N ] ≥ [L : M ].

As L/K is Galois, then so is L/M . But then

[L : M ] = |H|.
As H is a set of automorphisms of L/N , we have

[L : N ] ≥ |H| = [L : M ].

Thus M = N and the composition the other way is the identity. Thus
we have a correspondence. We have already seen that this correspon-
dence is inclusion reversing. �

The rest of the course will be adressed to deriving consequences of
the Fundamental Theorem. We start by observing,

Theorem 12.2 (Primitive Element Theorem). Let L/K be a finite
separable extension.

Then L/K is primitive.
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Proof. It suffices to prove that there are only finitely many intermediary
fields. To this end, we are certainly free to enlarge L. Replacing L by
its normal closure, we may as well assume that L/K is Galois. In this
case the Galois group G is finite and so there are clearly only finitely
many subgroups of G. But by the Galois correspondence there are then
only finitely many intermediary fields. �

It is traditional in the statement of the Fundamental Theorem to
characterise when M/K is normal in terms of the associated subgroup
H of G.

Theorem 12.3 (The Fundamental Theorem of Galois Theory: bis).
Let L/K be a finite Galois extension. Then there is an inclusion re-
versing bijection between the subgroups of the Galois group Gal(L/K)
and intermediary subfields L/M/K. Given a subgroup H, let M = LH

and given an intermediary field L/M/K, let H = Gal(L/M).
Furthermore M/K is normal if and only if H is normal in G. In

this case the Galois group of M/K is isomorphic to G/H.

Proof. We have already established the existence of the correspondence.
Recall that M/K is normal if and only if for every φ ∈ G, φ(M) ⊂M

if and only if φ(M) = M . Suppose that M/K is normal. Define a map

f : G −→ Gal(M/K),

by sending φ to the restriction ψ of φ to M . As M/K is normal, ψ
is indeed an automorphism of M/K. It is easy to check that f is a
homomorphism of groups. Clearly H is the kernel, so that H is indeed
normal. It follows that G/H is isomorphic to a subgroup of Gal(M/K).
But

|Gal(M/K)| = [M : K]

= |L : K]/[L : M ]

= |G|/|H|,

where we used the Tower Law and the fact that L/M and L/K are
Galois extensions, so that in fact Gal(M/K) ' G/H.

Now suppose that H is normal. Suppose that m ∈M and let φ ∈ G.
Set n = φ(m). As H stabilises m, then H = φHφ−1 stabilises n.
But, by the correspondence already established, the only elements of
L stabilised by all of H, are in fact elements of M . Thus n ∈ M , and
φ(M) ⊂M . But then M/K is normal. �

We now turn to the problem of computing Galois groups, in explicit
cases. It turns out that this is a relatively straightforward problem.
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Example 12.4. Let L = C/R.

Then L/K is Galois (indeed it is quadratic) and the Galois group
has order two. L = R(i). i is a root of x2 + 1, irreducible, and any
automorphism of L/K must send i to another root. There are only
two possible roots, ±i. One gives the identity, the other is complex
conjugation.

Similarly for any other quadratic extension.

Example 12.5. We compute the Galois group of x4 − 2 over K = Q.

By this we mean we look at the splitting field L/K of x4 − 2 and
compute this Galois group. We first start by computing the splitting
field. First we need to attach a fourth root of 2. Suppose that we call
this α. We get M = K(α) and as x4 − 2 is irreducible this is a degree
four extension. Then we add a primitive fourth root of 1. Call this i, so
that i2 = −1. We can always pick α so that it is real. Then i /∈M , so
that L/M is a degree two extension. Thus, by the Tower law, we have
a degree eight extension. Now L/K is Galois, as x4 − 2 is separable
(characteristic zero).

Thus |G| = 8. We look for generators and relations. First consider
the extension L = M(i)/M . This has order two, and so there is an
automorphism τ fixing M (that is fixing α) which switches i and −i.
Thus one automorphism of L/K is given by τ , where the action of τ
on generators is

τ(α) = α and τ(i) = −i.
Second note that there is an automorphism σ of L/K which sends

α to any other root, in particular iα. Now σ need not fix i. If it does
not, then τσ fixes i and sends α to −iα. But then the cube send α to
iα. Thus we may assume

σ(α) = iα and σ(i) = i.

Now σ4 = 1 and τ 2 = 1. In particular σ and τ generate two sub-
groups of G, of order four and two. It follows that σ and τ are genera-
tors of G. What are the relations? It suffices to compute the conjugate
of σ by τ , τστ . This sends i to i and α to −iα. Thus τστ−1 = σ3.
Thus G has presentation

Generators: σ and τ .
Relations: σ4 = τ 2 = e, τστ−1 = σ3.
We recognise this as D4, the Dihedral group of order eight, the sym-

metries of the square. In fact we can even see the square. The action
of G is determined by its action on the four roots ±α and ±iα, which
are arranged in a square on the argand diagram.
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Now we list all the possible subgroups and intermediate fields. We
have already computed all possible subgroups of D4. Let H be a sub-
group. Then the order of H divides the order of G, so that the order
of H is 1, 2, 4 or 8. The cases 1 and 8 are easy and obvious, the trivial
subgroup and the whole of D4.

Suppose that the order of H is two. Then H is generated by an
element of order two. There are five of these, the two diagonal flips,
the two side flips, and rotation by 180◦. Thus H is one of

〈τ〉, 〈σ2τ〉, 〈στ〉, 〈σ3τ〉, 〈σ2〉.

Now suppose that the order of H is four. One possibility is 〈σ〉.
Otherwise we have to combine two elements of order two together.
Now note that any subgroup of G of order 4 has index 2 and any
subgroup of index two is normal. Thus if H is a subgroup of order 4
then it is normal in G. But a subgroup H of G is normal if and only if
it is a union of conjugacy classes. Now the diagonal flips and the side
flips are conjugates of each other, so we can combine two side flips, or
two diagonal flips, but we cannot mix side and diagonal flips. Thus the
subgroups of order 4 are

〈σ〉, 〈τ, σ2〉, 〈στ, σ2〉.

Now we list the corresponding fixed fields. Two extremes are Q
and Q(α, i), corresponding to G and {e}. If M/Q is quadratic then
the corresponding subgroup H has order 4 and index 2. Thus we are
looking for three subfields of degree two,

Q(i), Q(
√

2), Q(i
√

2).

A little thought shows that in fact these fields are in the order corre-
sponding to the subgroups of order 4.

Now let us search for the intermediate fields of order four. These
correspond to subgroups of order two, so we are looking for five such
fields. One obvious one is Q(α), corresponding to τ . Similarly Q(iα)
corresponds to σ2τ . Also there is Q(i,

√
2) corresponding to σ2. Now

we need to compute the intermediate field associated to στ . There is
not much to do but write down the general element of L and see when
it is fixed by στ . Note that we know M contains Q(i

√
2), so we only

need to write down a basis for Q(α, i)/Q(i
√

2), which is easily seen to
be

1, α, i, iα.

So the general element of Q(α, i) is

a+ bα + ci+ d(iα)
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and this is sent to

a+ biα− ci+ d(α).

So c = 0 and b = d. Thus the corresponding fixed field is Q((1+i)α).
Similarly the other field of degree four is Q((1− i)α).

Now we turn to the problem of computing Galois groups over finite
fields. It turns out that this problem is almost completely trivial.

Definition 12.6. Let R be a ring of characteristic p. The map

Φ: R −→ R

defined as

Φ(a) = ap,

is a ring homomorphism, called the Frobenius map.

Theorem 12.7. Let L/K be an extension of finite fields.
Then L/K is Galois. Moreover the Galois group is cyclic, generated

by a power of Frobenius.

Proof. We already know that L ' Fq, K ' Fr, where q and r are
powers of p, q = pn and r = pm, where m|n and d = n/m is the degree
of the extension. Moreover L is the splitting field of the polynomial
xq − x and the non-zero elements of L are precisely the roots of unity.
As Φ is injective and L is finite, Φ is clearly an automorphism of L.

The fixed field of Φk is the set of all elements of L such that

at = a,

where t = pk, that is, all roots of the polynomial

xt − x.

But then Φm fixes K and the smallest power of Φm that fixes L is d.
Thus

〈Φm〉
is a subgroup of the Galois group of order d. But the Galois group has
order d. �

Example 12.8. Let us compute the Galois group of f(x) = x4 + x+ 1
over the field F2.

The problem essentially boils down to factoring f . f certainly does
not have any linear factors as it has no roots. Suppose then that f
were reducible. Then

x4 + x+ 1 = (x2 + ax+ b)(x2 + cx+ d),
5



where a, b, c and d ∈ F2. Looking at the coefficient of x3, we have
c = −a = a and looking at the constant coefficient we have bd = 1, so
that b = d = 1. Thus we would have

x4 + x+ 1 = (x2 + ax+ 1)(x2 + ax+ 1) = x4 + ax2 + 1,

a contradiction.
Thus x4 + x + 1 is irreducible. Let L be a splitting field and let α

be a root of f . Then M = F2(α) is normal, as all extensions of finite
fields are normal. Thus L = M and L/F2 has degree four. Thus the
Galois group is cyclic of order 4.

Lemma 12.9. Let f(x) ∈ R[x] have odd degree.
Then f(x) has a real root.

Proof. We may as well suppose that f(x) is monic. We may write

f(x) = xn +
∑

aix
i,

Let m = max |ai|, and pick x > nm. Then

f(x) ≥ xn − |
∑

aix
i|

≥ xn −
∑
|ai||xi|

≥ xn − nmxn−1

≥ xn−1(x− nm) > 0.

Similarly f(x) < 0, for x < −nm. Thus f(x) must have a zero by
the Intermediate Value Theorem. �

Theorem 12.10 (Fundamental Theorem of Algebra). C is the alge-
braic closure of R.

In particular C is algebraically closed.

Proof. Let L/C be a finite extension. It suffices to prove that L = C.
Passing to a normal closure we may assume that L/R is Galois. Let G
be the Galois group. Let H be a Sylow 2-subgroup. Let M = LH be
the corresponding fixed field.

Then M/R has odd degree. Let α ∈M and let f(x) be the minimum
polynomial of α. Then f(x) has odd degree. But then f(x) has a root
in R. As f(x) is irreducible, its degree must be one. But then α ∈ R
and so M = R. Thus L/R has degree a power of two. Similarly for
L/C.

Suppose that G is not the trivial group. By Sylow’s Theorem there is
a subgroup H of G of index two. But then there would be an extension
M/C of degree two. As the characteristic is zero, there would then be
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an element α ∈ M such that α2 ∈ C. But C is certainly closed under
taking square roots, a contradiction.

Thus G is trivial and L = C. �
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