11. COUNTING AUTOMORPHISMS

Definition 11.1. Let L/K be a field extension.
An automorphism of L/K is simply an automorphism of L which
fizes K.

Here, when we say that ¢ fixes K, we mean that the restriction of ¢
to K is the identity, that is, ¢ extends the identity; in other words we
require that ¢ fixes every point of K and not just the whole subset.

Definition-Lemma 11.2. Let L/K be a field extension.
The Galois group of L/K, denoted Gal(L/K), is the subgroup of
the set of all functions from L to L, which are automorphisms over K.

Proof. The only thing to prove is that the composition and inverse of
an automorphism over K is an automorphism, which is left as an easy
exercise to the reader. 0

The key issue is to establish that the Galois group has enough ele-
ments.

Proposition 11.3. Let L/K be a finite normal extension and let M
be an intermediary field.

TFAE

(1) M/K is normal.
(2) For every automorphism ¢ of L/K, (M) C M.
(3) For every automorphism ¢ of L/K, ¢(M) = M.

Proof. Suppose (1) holds. Let ¢ be any automorphism of L/K. Pick
a € M and set ¢(«) = 5. Then [ is a root of the minimum polynomial
m of a. As M /K is normal, and « is a root of m(x), m(x) splits in M.
In particular § € M. Thus (1) implies (2).

Suppose that (2) holds and let ¢ be any automorphism of L/K. As
L/K is finite, then so is M/K. As ¢ is an automorphism,

(M) : K] = [M : K],

On the other hand, by hypothesis ¢(M) C M. So by the Tower Law,
[M : ¢(M)] = 1. Hence (2) implies (3).

Now suppose that (3) holds. Let f(z) be an irreducible polynomial
and let & € M be a root of f(z). As L/K is normal, f(z) splits in L.
Let 5 be any other root of f(x). Then we may find an automorphism
¢ of L that carries o to 5, by (8.8). As ¢(M) C M, it follows that
B € M. But then f(x) splits in M. Thus (3) implies (1). O
Lemma 11.4. Let L/K be a separable extension and let M /K be an

intermediary field.

Then M/K and L/M are both separable.
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Proof. M/K is clearly separable.

Suppose that o € L. Let f(z) be the minimum polynomial of «
over L and let g(x) be the minimum polynomial over K. Then f(z)
divides g(z). On the other hand, g(z) is separable, that is, g(x) has no
repeated roots, as L/K is separable. Thus f(z) has no repeated roots
and so L/M is separable. O

Lemma 11.5. Let L/K be a field extension, let o € L be algebraic and
let M = K(«) be the intermediary field generated by «. Suppose that
the degree of M/ K is d. Let ¢: K — K’ be any ring homorphism and
let L'/ K’ be a normal field extension.

Then there are at most d ring homomorphisms ¥: M — L', ex-
tending ¢, with equality if and only if o is separable and there is at
least one automorphism extending ¢.

Proof. Let m(x) be the minimum polynomial of a. The degree of m(z)
is d. Let m/(z) be the corresponding polynomial in K'[z]. Then m/(z)
has at most d roots, with equality if and only if « is separable and it
has one root. On the other hand any map ¢ extending ¢ is determined
by its action on « and there is an automorphism carrying « to § if and
only if £ is a root of m/(z). O

Proposition 11.6. Let L/K be a finite field extension, let ¢: K —
K' be any ring homomorphism and suppose that L' /K’ is normal.

Then there are at most [L : K| ring homomorphisms ¢: L — L’
extending ¢ with equality if and only if L/ K is separable and there is
at least one automorphism extending ¢.

Proof. The proof is by induction on [L : K]. If L = K there is nothing
to prove. Otherwise pick @« € L — K. Suppose that the degree of
M = K(a)/K is d. By there are at most d = [M : K] ring
homomorphisms 7: M — L’ extending ¢. On the other hand, as
(M : K] > 1, by the Tower Law [L : M] < [L : K], so that by
induction there are at most [L : M| ring homomorphisms ¢: L — L’
extending a given 7. Since any 1 extends at least one 7, there are at
most [L : K] = [L : M][M : K] extensions of ¢, with equality if and
only if «v is separable and, by induction, [L : M] is separable.

This proves the inequality and that there is equality if L/K is sep-
arable. On the other hand, note that if there is equality, then simply
varying «, we see that every element of L/K is separable, so that L/K
is separable. O

Corollary 11.7. Let L/K be a finite extension and let M be an inter-
mediary extension.
Then L/K is separable if and only if L/M and M /K are separable.
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Proof. By it suffices to prove that if L/M and M/K are sepa-
rable, then L/K is separable. Let N/K be a normal closure of L/K.
By there are [M : K] ring homomorphisms 7: M — N, whose
restriction to K is the identity, and for each such 7 there are then
[L : M] ring homomorphisms ¢: L — N extending 7. There are thus
at least [L : K] = [L : M][M : K] ring homomorphisms ¢: L — N
extending the identity. It follows by that L/K is separable. [

Corollary 11.8. Let L/K be a finite extension, and suppose that L =
K(ag,ag, ... ).
Then L/K is separable if and only if each o is separable.

Proof. Let M; be the intermediary field generated by the first ¢ a’s,
aq,Qa, ..., a;. The result then follows by (11.7) and an obvious induc-
tion. U

Definition 11.9. Let L/K be a field extension.
We say that L/ K is Galois if it is normal and separable.

It is easy to give some nice characterisations of finite Galois exten-
sions.

Lemma 11.10. Let L/K be a finite field extension.
Then L/ K is Galois if and only if it is the splitting field of a separable
polynomial f(z) € K|z].

Proof. Easy. 0

Lemma 11.11. Let L/K be a separable extension, and let N/K be a
normal closure.
Then N/K is Galois.

Proof. Note that the normal closure of a separable field extension L/K
is the splitting field of a separable polynomial, as each irreducible factor
of the polynomial has a root in L. The result follows by (11.10). O

Theorem 11.12. Let L/K be a finite extension.
Then L/K is Galois if and only if there are L : K| automorphisms
of L/K.

Proof. Suppose that L/K is Galois. Then the result follows by
and .

Now suppose that there are [L : K| automorphisms of L/K. Let
N/K be a normal closure. Then there are at most [L : K] ring homo-
morphisms ¢: L. — N. It follows that L/K is separable, by
and that every ring homomorphism is in fact an automorphism, so that

L/K is normal, by (11.3]). O
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Definition 11.13. Let L be a field and let G be a collection of auto-
morphisms of L. The fized field of G, denoted LS, is the set of all
elements of L which are fixed by every element of GG.

Note that if X is a set of automorphisms of L and G is the subgroup
of the group of all functions from L to L generated by X then LX = L¢.
So we might as well assume that G is a group, when dealing with fixed
fields.

Lemma 11.14. Let L/M/K be a field extension, let G be a group of
automorphisms of L and let H be a subgroup. Then

(1) G C Gal(L/L%Y).
(2) K C LOEE),
(3) L¢ c LH.
(4) Gal(L/M) C Gal(L/K).
Proof. Easy. O

Let G be a group of automorphisms of L and let K be the fixed field.
Our object is to prove that in fact the two associations,

G— L% and M — Gal(L/M),

set-up an order reversing correspondence between the subgroups of G
and the intermediary fields L/M /K. The key point will be to establish
that L/K is Galois, that is, we want
IL: K] =|G|
Definition 11.15. Let R be a ring. R* denotes the group of units,
under multiplication.
If R is a field, then R* = R — {0}.

Definition 11.16. Let G be a group and let K be a field. A character
1 a group homomorphism

G — K.

Recall that given any set X and an R-module M, the set of all
functions from X to M has the structure of an R-module.

Lemma 11.17. Let G be a group and let K be a field.
Then any set of characters is linearly independent.

Proof. Suppose not. Then we may find characters xi, x2,. .., Xx» and
scalars aq, as, . ..,a, € K such that

> aixi =0,

i=1
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where not all a; are zero. We pick n > 0 minimal with this property.
In particular a; # 0 for all i. n # 1, as otherwise 0 = a;x1(1) = a1. As
X1 # Xn we may find h € G such that xi(h) # xn(h).

We have
Z azXZ(g) = 07

i=1
for every g € G. In particular this equation holds with hg in place of
g. It follows that

0= Z aiXi(hg)
= Z aixi(h)xi(9)-

Now multiply the first equation by x,(h) # 0, to get two equations
with the same last term,

ZaiXi(h)Xi<g) =0
Z aixn(h)xi(g) = 0.

If we subtract the second equation from the first we get an equation of

the form
Z bixi(g) = 0.
i=1
where b; = a;(x;(h) — xn(g)). As this is valid for all g € G, we have

Z bixi = 0.
i=1

By assumption b; # 0, so that we have a smaller non-trivial linear
dependence, a contradiction. O

Lemma 11.18. Any set of automorphisms of a field L are linearly
independent.

Proof. Any automorphism ¢ determines and is determined by the ob-
vious character

x: L*— L*
so that the result is an immediate consequence of ((11.17)). U

Lemma 11.19. Let L be a field and let X be any set of automorphisms
of L, with fized field K = L~.
Then
[L: K] > |X],
where we only require the LHS to be infinite if the RHS is infinite.
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Proof. Suppose not. Then L/K would be finite. Let ly,[s,... 1, be
a basis. By assumption we could find o, 09, ..., 0, automorphisms of
L/K with n > m. Consider the system of m x n equations

Z o;(l)x; = 0.

As there are n unknowns and m < n equations, there is a non-trivial
solution ay,asg,...,a, € K (just apply Gaussian elimination). I claim

that
Z&jO’j = O
J
Let [ € L. Then we may find by, b, ...,b,, € K such that
1= bili.

In this case

> ajoil) =) %U(Z bil;)

j ;

= Z Z ajbia(li)
= Z b, <Z aﬂ(%‘))

J
= ()’
which establishes the claim. But this contradicts the fact that any set
of automorphisms is linearly independent. U

Lemma 11.20. Let L be any field and let G be any finite group of
automorphisms of L, with fized field K.
Then

L:K]=|G|.
In particular L) K is Galois.

Proof. We have already seen that

[L: K] > |G|
Suppose that [L : K] > |G|. Suppose that the elements of G are
01,09,...,0,m. Then we may find [y,ls,...,[, an independent set of

elements of L, with n > m. As the set of equations

> oilly)z; =0,

J
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has m equations and n > m unknowns, we may find a non-trivial
solution ai, as,...,a, € L. Possibly rearranging, we may assume that
o1 is the identity. Thus the first equation reads

Z ajlj = 0.

As we are assuming that [y, s, ..., [, are independent over K, it follows
that not every a; € K. Amongst all such solutions, we choose one with
the smallest number r of a; non-zero. We may assume that a; = 0 if
and only if j > r > 0. Rescaling we may assume that a, = 1. As not
all a; € K, we may assume that a; ¢ K. In particular r > 1.

As K is the fixed field of G and a; ¢ K, we may find an element of
G that does not fix a;, say 0. As the map

G —d

given by multiplication on the left by ¢ is a bijection, it follows that as
o; runs over the elements of GG, so does o o ;. So consider applying o
to each of the equations above. As ¢ is a ring homomorphism it follows
that we get a new solution to these equations

> bioi(ly) =0,
j

where b; = o(a;). By hypothesis by # a;. Multiplying the first set of
equations by b; and the second set by a; and subtracting one set from
another, we obtain a solution

Zai(lj)cl- = 0,
where ¢, # 0 but ¢; = 0. But this contradicts our original choice of
1,09, .-, Qp. [
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