$\begin{array}{c} \textbf{FINAL EXAM} \\ \textbf{MATH 200B, UCSD, WINTER 17} \end{array}$ You have three hours. | There are 11 problems, and the total number of points is 170. Show all your work. Please make your work as clear and easy to follow as possible. | |--| | Name: | | Signature: | Section instructor:______ Section Time:_____ | Problem | Points | Score | |---------|--------|-------| | 1 | 30 | | | 2 | 10 | | | 3 | 10 | | | 4 | 10 | | | 5 | 15 | | | 6 | 15 | | | 7 | 20 | | | 8 | 15 | | | 9 | 25 | | | 10 | 10 | | | 11 | 10 | | | 12 | 10 | | | 13 | 10 | | | 14 | 10 | | | 15 | 10 | | | Total | 170 | | 1. (30pts) (i) Give the definition of a symmetric multilinear map. If M and N are R-modules, a function $$f \colon M^d \longrightarrow N$$ is multilinear if it is linear in each variable. It is symmetric if it is invariant under switching any two entries. (ii) Give the definition of the algebraic closure of a field K. The field extension L/K is the algebraic closure of K, if L/K is algebraic and if every polynomial with coefficients in K, splits in L. (iii) Give the definition of a normal extension. An algebraic extension L/K is normal if every polynomial with coefficients in K and one zero in L splits in L. (iv) Give the definition of a separable polynomial, a separable element and a separable extension. A polynomial is separable, if each irreducible factor has no repeated roots. An element $\alpha \in L/K$ is separable, if its minimum polynomial over K is separable. An extension L/K is separable, if every element $\alpha \in L$ is separable over K. (v) Give the definition of the Galois group of an extension. The set of automorphisms of L that fix the groundfield K, considered as a subgroup of the set of all permutations of L. (vi) Give the definition of a character. A character is a group homomorphism $$\chi\colon G\longrightarrow K^*$$ from a group G to the multiplicative group K^* of a field K. 2. (10pts) Let M be a Noetherian R-module. If $\phi: M \longrightarrow M$ is a surjective R-linear map, prove that ϕ is an automorphism. Let M_n be the kernel of ϕ^n . Note that we have an ascending chain, $$M_1 \subset M_2 \subset M_3 \subset \dots$$ Suppose that $M_1 \neq 0$. We will define $m_n \in M_n - M_{n-1}$ recursively, so that $\phi(m_n) = m_{n-1}$. By assumption, there is $m_1 \in M_1$, such that $m_1 \neq 0$. Suppose we have defined m_1, m_2, \ldots, m_n . As ϕ is surjective, there is an $m_{n+1} \in M$ such that $\phi(m_{n+1}) = m_n$. As $m_n \in M_n$, it is immediate that $m_{n+1} \in M_{n+1}$ but not in M_n . Thus we have a strictly increasing sequence of submodules of M. This contradicts the fact that M is Noetherian. Thus M_1 is the trivial module and ϕ must be injective. In this case ϕ must be a bijection, so that it is an automorphism. 3. (10pts) Let M, N and P be R-modules over a ring R. Show that there is a natural isomorphism: $$\operatorname{Hom}_R(M \underset{R}{\otimes} N, P) \simeq \operatorname{Hom}_R(M, \operatorname{Hom}_R(N, P)).$$ By the universal property of the tensor product, an element of $\operatorname{Hom}_R(M \underset{R}{\otimes} N, P)$ is the same as a bilinear map $$M \times N \longrightarrow P$$. If we fix $m \in M$ this gives us an R-linear map $N \longrightarrow P$, an element of $\operatorname{Hom}_R(N,P)$. Varying m gives us a function $$M \longrightarrow \operatorname{Hom}_R(N, P),$$ which it is not hard to see is R-linear. Thus we get an element of $\operatorname{Hom}_R(M,\operatorname{Hom}_R(N,P))$. It is straightforward to check that this assignment is R-linear. Now suppose that we have an element of $\operatorname{Hom}_R(M, \operatorname{Hom}_R(N, P))$. For every $m \in M$ we get an R-linear map $N \longrightarrow P$. This defines a function $M \times N \longrightarrow P$ which is bilinear, so that we get an element of $\operatorname{Hom}_R(M \otimes N, P)$. It is not hard to see that this is the inverse of the first assignment, so that we get an isomorphism: $$\operatorname{Hom}_R(M \underset{R}{\otimes} N, P) \simeq \operatorname{Hom}_R(M, \operatorname{Hom}_R(N, P)).$$ 4. (10pts) How many conjugacy classes of 5×5 matrices over \mathbb{Q} with minimum polynomial x^3 are there? Two matrices are conjugate if and only if they have the same rational canonical form. So we just need to count the number of 5×5 matrices with minimal polynomial x^3 in rational canonical form. To guarantee the minimal polynomial is x^3 we must have a block of the form $$\begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$$ and no bigger blocks. There are then two possibilities: 5. (15pts) (i) Show that every finite subgroup of the multiplicative group of a field is cyclic. Let G be a finite subgroup of K^* , where K is a field. Then G is a finite abelian group, and so, by the Fundamental Theorem of finitely generated abelian groups, G is isomorphic to $$\mathbb{Z}_{m_1} \times \mathbb{Z}_{m_2} \times \mathbb{Z}_{m_3} \times \cdots \times \mathbb{Z}_{m_r}$$ where $m_i|m_{i+1}$, for every $i \leq r-1$. Thus the exponent e of G is equal to m_r and this is equal to the order of G if and only if G is cyclic. On the other hand, by definition of the exponent, every element of G is a root of $$x^e - 1 \in K[x].$$ As this has at most e roots, it follows that $e \ge |G|$, so that G is indeed cyclic. (ii) Let \mathbb{F} be a finite field with q elements. Show that \mathbb{F} is the splitting field of the polynomial $x^q - x$. By (i), G the set of non-zero elements of \mathbb{F} , is cyclic of order q-1. Thus the elements of G are precisely the roots of the polynomial $$x^{q-1} - 1 \in \mathbb{F}_p[x].$$ But then the elements of L are precisely the q roots of $$x^q - x$$. In particular L is the splitting field of $x^q - x$. 6. (15pts) (i) State a simple criterion for a finite field extension L/K to be normal. L/K is normal if and only if it is the splitting field of some polynomial $f(x) \in K[x]$. - (ii) Which of the following fields extensions are normal? - (a) $\mathbb{Q}(\sqrt{2}, \sqrt{3})/\mathbb{Q}$. Normal, as the splitting field of $(x^2 - 2)(x^2 - 3)$. (b) $\mathbb{Q}(\sqrt[3]{2})/\mathbb{Q}$. Not normal. x^3-2 has a root in L, but x^3-2 does not split in L. Indeed if $\alpha=\sqrt[3]{2}$, then the other roots are $\omega\alpha$ and $\omega^2\alpha$, and ω is not an element of $L\subset\mathbb{R}$. 7. (20pts) (i) Let $f(x) \in K[x]$ be a polynomial and let L/K be a splitting field for f(x). Prove that $\alpha \in L/K$ is a repeated root of f(x) if and only if α is a common root of f(x) and Df(x) (where Df denotes the formal derivative). Suppose that α is a repeated root of f(x). Then we may write $$f(x) = (x - \alpha)^2 g(x),$$ where $g(x) \in L[x]$. Then $$Df(x) = 2(x - \alpha)g(x) + (x - \alpha)^2 Dg(x),$$ so that α is also a root of Df(x). Conversely suppose that α is a root of f(x) and Df(x). Then we may write $$f(x) = (x - \alpha)g(x),$$ where $g(x) \in L[x]$. Then $$Df(x) = g(x) + (x - \alpha)Dg(x).$$ Thus α is a root of g(x). But then α is a repeated root of g(x). (ii) Prove that every field extension in characteristic zero is separable. It suffices to prove that every irreducible polynomial f(x) over a field of characteristic zero does not have a repeated root. Let g(x) be the formal derivative of f(x). Then g(x) is not the zero polynomial, as the characteristic is zero. Let α be a root of g(x) in some splitting field. Then the minimum polynomial m(x) of α divides g(x) and so it is of degree less than the degree of f(x). As f(x) is irreducible, m(x) cannot divide f(x) and so α cannot be a root of f(x). Thus f(x) and g(x) do not have a common root and so f(x) does not have a repeated root. (iii) Prove that every extension of finite fields is separable. Let \mathbb{F} be a finite field. We proved that every element of \mathbb{F} is a root of the polynomial $x^q - x$. But $D(x^q - x) = -1$, and so this polynomial has no repeated roots. 8. (15pts) (i) Let L/K be a finite field extension. Carefully state a criterion for L/K be separable which involves [L:K]. L/K is separable if and only if the number of ring homorphisms of L/K into a normal closure N is at least [L:K]. (ii) Is every finite separable extension of a finite separable extension, separable? Yes. Let M/K and L/M be two finite separable extensions. Let N/L be a normal closure. Then the number of ring homorphisms $\pi\colon M\longrightarrow N$ is equal to [M:K] as M/K is separable and for each such map π , the number of ring homorphisms $\psi\colon L\longrightarrow N$ extending π is equal to [L:M], as L/M is separable. But then there at least $$[L:K] = [L:M][M:K]$$ ring homorphisms $\pi \colon L \longrightarrow N$ over K. (iii) Is every finite normal extension of a finite normal extension, normal? No. Consider $K = \mathbb{Q}$, $M = \mathbb{Q}(\sqrt{2})$ and $L = \mathbb{Q}(\sqrt[4]{2})$. Then L/M and M/K are normal as they are quadratic. But $x^4 - 2$ is irreducible over \mathbb{Q} , by Eisenstein, has a root in L but does not split in L. 9. (25pts) Find the indicated Galois groups. Carefully justify your answers. (i) $$(x^2-2)(x^2-3)$$ over \mathbb{Q} . Let $L=\mathbb{Q}(\sqrt{2},\sqrt{3})$. Let $M=\mathbb{Q}(\sqrt{2})$. Now x^2-2 is irreducible by Eisenstein, applied with p=2, so that [M:K]=2. Similarly [L:M]=1 or 2, depending on whether x^2-3 is reducible over M. But if it is reducible, then L=M and $\sqrt{3}\in M$, which it is easy to check does not happen. Thus [L:K]=4. It follows that the Galois group has order 4. On the other hand, an element of the Galois group must send a root of $x^2 - 2$ to another root, and so it must send $\sqrt{2}$ to $\pm \sqrt{2}$. Similarly for $\sqrt{3}$. As there are at most 4 such maps, and the action of an element of the Galois group is determined by its action on the $\sqrt{2}$, $\sqrt{3}$, the result follows. (ii) $$x^{15} - 1$$ over \mathbb{Q} . Φ_{15} is irreducible over \mathbb{Q} and so the Galois group is isomorphic to U_{15} . But $U_{15} = \{1, 2, 4, 7, 8, 11, 13, 14\}$. By inspection every element has order at most 4 and there is an element of order 4 (for example 2). So this group is isomorphic to $\mathbb{Z}_4 \times \mathbb{Z}_2$. (iii) $x^7 - 5$ over the splitting field of $x^7 - 1$ over \mathbb{Q} . As 7 is prime, either x^7-5 is irreducible over K or it splits in K. Now x^7-5 is irreducible over $\mathbb Q$ by Eisenstein, and so the only way it could split in K, is if we adjoin a root, in which case $[K:\mathbb Q]$ would be divisible by 7. As it is not x^7-5 is irreducible over K. As x^7-1 splits in K, it follows that the Galois group is cyclic, of order 7. (iv) $$x^4 - 3$$ over \mathbb{F}_5 . \mathbb{Z}_4 . As we are over a finite field, the Galois must be cyclic. We only need to check that $x^4 + 2$ is irreducible. If it had a linear factor, then we would have a root. But $a^4 = 1$, if $a \neq 0$, and so there are no roots. Otherwise it factors as $$x^4 + 2 = (x^2 + ax + b)(x^2 + cx + d).$$ Looking at the cubic term we have a + c = 0. Thus $$x^4 + 2 = (x^2 + ax + b)(x^2 - ax + d).$$ Looking at the quadratic terms, we have $b+d=a^2$. Looking at the linear term we have ab=ad. If $a\neq 0$, then b=d, so that $b^2=2$. But 2 is not a square mod 5, impossible. Thus a=0. But then d=-b and $b^2=3$, again impossible. Thus $x^4 + 2$ is irreducible. Let $\alpha \in L$ be a root. Then $K(\alpha)/K$ is normal, as it is an extension of finite fields and so $x^4 + 2$ splits in $K(\alpha)$. Thus $L = K(\alpha)$ and so L/K has degree four. (v) $x^4 - 3$ over \mathbb{Q} . D_4 . A splitting field is given by $L = \mathbb{Q}(\alpha, i)$ is a splitting field, where α is a root of $x^4 - 3$ and i is a square root of -1. Now $\mathbb{Q}(\alpha)/\mathbb{Q}$ has degree four, as $x^4 - 3$ is irreducible by Eisenstein. On the other hand i is not an element of $\mathbb{Q}(\alpha)$ as i is not real. Thus the degree of L/\mathbb{Q} is eight. Let $M = \mathbb{Q}(i)$. Then L/M has degree four. Thus $x^4 - 3$ is irreducible, and as $x^4 - 1$ splits in M, this is a cyclic extension of degree four (that is the Galois group is cyclic). Let σ be the corresponding generator. Let τ be the automorphism, given as complex conjugation. Then $\sigma^4 = \tau^2 = 1$. It suffices to compute $\tau \sigma \tau$, which it is easy to see is σ^3 (compare their actions on α and i). But this is precisely a presentation for D_4 . 10. (10pts) State and prove the Fundamental Theorem of Algebra, stating carefully what you use to prove this result. Let $f(x) \in \mathbb{C}[x]$. Then f(x) splits over \mathbb{C} . It suffices to prove that there are no non-trivial finite extensions of \mathbb{C} . Let L/\mathbb{C} a finite extension. Passing to a normal closure over \mathbb{R} , we may assume that L/\mathbb{R} is Galois. Let G be the Galois group and let H by a Sylow 2-subgroup. Let M be the corresponding fixed field. Then M/\mathbb{R} has odd degree. Let $\alpha \in M$. Then the minimum polynomial of α has odd degree. As every odd degree real polynomial has a root, it follows that $\alpha \in \mathbb{R}$, so that $M = \mathbb{R}$. Thus we may assume that G has degree a power of two. Replacing G by a subgroup, we may assume that G is the Galois group of L/\mathbb{C} . Suppose that G is not trivia. As G is a 2-group, it has a subgroup of index two, call it H. Let M be the corresponding field. Then M/\mathbb{C} has degree two. As every quadratic polynomial has a root (the quadratic formula), $M = \mathbb{C}$, a contradiction. 11. (10pts) Find $\Phi_4(x)$, $\Phi_6(x)$ and $\Phi_{12}(x)$ in characteristic zero. $$x^4-1=\Phi_1(x)\Phi_2(x)\Phi_4(x)=(x^2-1)(x^2+1).$$ Thus $\Phi_4(x)=x^2+1.$ $$x^6 - 1 = \Phi_1 \Phi_2 \Phi_3 \Phi_6 = (x^3 - 1)(x^3 + 1) = (x^3 - 1)(x + 1)(x^2 - x + 1)$$ Thus $\Phi_6(x) = x^2 - x + 1$. $$x^{12} - 1 = \Phi_1 \Phi_2 \Phi_3 \Phi_4 \Phi_6 \Phi_{12} = (x^6 - 1)(x^6 + 1).$$ So $$x^{6} + 1 = (x^{2} + 1)(x^{4} - x^{2} + 1) = \Phi_{2}\Phi_{12}.$$ Thus $$\Phi_{12} = x^4 - x^2 + 1.$$ ## **Bonus Challenge Problems** 12. (10pts) If R is Noetherian then prove that the power series ring $R[\![x]\!]$ is Noetherian. (You may assume that every finitely generated module over a Noetherian ring is Noetherian). 13. (10pts) Show that any set of characters is linearly independent. 14. (10pts) Let G be a collection of automorphisms acting on a field L and let $K=L^G$ be the fixed field. Show that $[L:K]\geq |G|$. 15. (10pts) Prove that $\Phi_n(x)$ is irreducible over \mathbb{Q} .