$\begin{array}{c} \textbf{FINAL EXAM} \\ \textbf{MATH 200B, UCSD, WINTER 17} \end{array}$

You have three hours.

There are 11 problems, and the total number of points is 170. Show all your work. Please make your work as clear and easy to follow as possible.
Name:
Signature:

Section instructor:______
Section Time:_____

Problem	Points	Score
1	30	
2	10	
3	10	
4	10	
5	15	
6	15	
7	20	
8	15	
9	25	
10	10	
11	10	
12	10	
13	10	
14	10	
15	10	
Total	170	

1. (30pts) (i) Give the definition of a symmetric multilinear map.

If M and N are R-modules, a function

$$f \colon M^d \longrightarrow N$$

is multilinear if it is linear in each variable. It is symmetric if it is invariant under switching any two entries.

(ii) Give the definition of the algebraic closure of a field K.

The field extension L/K is the algebraic closure of K, if L/K is algebraic and if every polynomial with coefficients in K, splits in L.

(iii) Give the definition of a normal extension.

An algebraic extension L/K is normal if every polynomial with coefficients in K and one zero in L splits in L.

(iv) Give the definition of a separable polynomial, a separable element and a separable extension.

A polynomial is separable, if each irreducible factor has no repeated roots. An element $\alpha \in L/K$ is separable, if its minimum polynomial over K is separable. An extension L/K is separable, if every element $\alpha \in L$ is separable over K.

(v) Give the definition of the Galois group of an extension.

The set of automorphisms of L that fix the groundfield K, considered as a subgroup of the set of all permutations of L.

(vi) Give the definition of a character.

A character is a group homomorphism

$$\chi\colon G\longrightarrow K^*$$

from a group G to the multiplicative group K^* of a field K.

2. (10pts) Let M be a Noetherian R-module. If $\phi: M \longrightarrow M$ is a surjective R-linear map, prove that ϕ is an automorphism.

Let M_n be the kernel of ϕ^n . Note that we have an ascending chain,

$$M_1 \subset M_2 \subset M_3 \subset \dots$$

Suppose that $M_1 \neq 0$. We will define $m_n \in M_n - M_{n-1}$ recursively, so that $\phi(m_n) = m_{n-1}$. By assumption, there is $m_1 \in M_1$, such that $m_1 \neq 0$. Suppose we have defined m_1, m_2, \ldots, m_n . As ϕ is surjective, there is an $m_{n+1} \in M$ such that $\phi(m_{n+1}) = m_n$. As $m_n \in M_n$, it is immediate that $m_{n+1} \in M_{n+1}$ but not in M_n . Thus we have a strictly increasing sequence of submodules of M. This contradicts the fact that M is Noetherian.

Thus M_1 is the trivial module and ϕ must be injective. In this case ϕ must be a bijection, so that it is an automorphism.

3. (10pts) Let M, N and P be R-modules over a ring R. Show that there is a natural isomorphism:

$$\operatorname{Hom}_R(M \underset{R}{\otimes} N, P) \simeq \operatorname{Hom}_R(M, \operatorname{Hom}_R(N, P)).$$

By the universal property of the tensor product, an element of $\operatorname{Hom}_R(M \underset{R}{\otimes} N, P)$ is the same as a bilinear map

$$M \times N \longrightarrow P$$
.

If we fix $m \in M$ this gives us an R-linear map $N \longrightarrow P$, an element of $\operatorname{Hom}_R(N,P)$. Varying m gives us a function

$$M \longrightarrow \operatorname{Hom}_R(N, P),$$

which it is not hard to see is R-linear. Thus we get an element of $\operatorname{Hom}_R(M,\operatorname{Hom}_R(N,P))$. It is straightforward to check that this assignment is R-linear.

Now suppose that we have an element of $\operatorname{Hom}_R(M, \operatorname{Hom}_R(N, P))$. For every $m \in M$ we get an R-linear map $N \longrightarrow P$. This defines a function $M \times N \longrightarrow P$ which is bilinear, so that we get an element of $\operatorname{Hom}_R(M \otimes N, P)$. It is not hard to see that this is the inverse of the first assignment, so that we get an isomorphism:

$$\operatorname{Hom}_R(M \underset{R}{\otimes} N, P) \simeq \operatorname{Hom}_R(M, \operatorname{Hom}_R(N, P)).$$

4. (10pts) How many conjugacy classes of 5×5 matrices over \mathbb{Q} with minimum polynomial x^3 are there?

Two matrices are conjugate if and only if they have the same rational canonical form. So we just need to count the number of 5×5 matrices with minimal polynomial x^3 in rational canonical form.

To guarantee the minimal polynomial is x^3 we must have a block of the form

$$\begin{pmatrix}
0 & 1 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{pmatrix}$$

and no bigger blocks. There are then two possibilities:

5. (15pts) (i) Show that every finite subgroup of the multiplicative group of a field is cyclic.

Let G be a finite subgroup of K^* , where K is a field. Then G is a finite abelian group, and so, by the Fundamental Theorem of finitely generated abelian groups, G is isomorphic to

$$\mathbb{Z}_{m_1} \times \mathbb{Z}_{m_2} \times \mathbb{Z}_{m_3} \times \cdots \times \mathbb{Z}_{m_r}$$

where $m_i|m_{i+1}$, for every $i \leq r-1$. Thus the exponent e of G is equal to m_r and this is equal to the order of G if and only if G is cyclic. On the other hand, by definition of the exponent, every element of G is a root of

$$x^e - 1 \in K[x].$$

As this has at most e roots, it follows that $e \ge |G|$, so that G is indeed cyclic.

(ii) Let \mathbb{F} be a finite field with q elements. Show that \mathbb{F} is the splitting field of the polynomial $x^q - x$.

By (i), G the set of non-zero elements of \mathbb{F} , is cyclic of order q-1. Thus the elements of G are precisely the roots of the polynomial

$$x^{q-1} - 1 \in \mathbb{F}_p[x].$$

But then the elements of L are precisely the q roots of

$$x^q - x$$
.

In particular L is the splitting field of $x^q - x$.

6. (15pts) (i) State a simple criterion for a finite field extension L/K to be normal.

L/K is normal if and only if it is the splitting field of some polynomial $f(x) \in K[x]$.

- (ii) Which of the following fields extensions are normal?
- (a) $\mathbb{Q}(\sqrt{2}, \sqrt{3})/\mathbb{Q}$.

Normal, as the splitting field of $(x^2 - 2)(x^2 - 3)$.

(b) $\mathbb{Q}(\sqrt[3]{2})/\mathbb{Q}$.

Not normal. x^3-2 has a root in L, but x^3-2 does not split in L. Indeed if $\alpha=\sqrt[3]{2}$, then the other roots are $\omega\alpha$ and $\omega^2\alpha$, and ω is not an element of $L\subset\mathbb{R}$.

7. (20pts) (i) Let $f(x) \in K[x]$ be a polynomial and let L/K be a splitting field for f(x). Prove that $\alpha \in L/K$ is a repeated root of f(x) if and only if α is a common root of f(x) and Df(x) (where Df denotes the formal derivative).

Suppose that α is a repeated root of f(x). Then we may write

$$f(x) = (x - \alpha)^2 g(x),$$

where $g(x) \in L[x]$. Then

$$Df(x) = 2(x - \alpha)g(x) + (x - \alpha)^2 Dg(x),$$

so that α is also a root of Df(x).

Conversely suppose that α is a root of f(x) and Df(x). Then we may write

$$f(x) = (x - \alpha)g(x),$$

where $g(x) \in L[x]$. Then

$$Df(x) = g(x) + (x - \alpha)Dg(x).$$

Thus α is a root of g(x). But then α is a repeated root of g(x).

(ii) Prove that every field extension in characteristic zero is separable.

It suffices to prove that every irreducible polynomial f(x) over a field of characteristic zero does not have a repeated root. Let g(x) be the formal derivative of f(x). Then g(x) is not the zero polynomial, as the characteristic is zero. Let α be a root of g(x) in some splitting field. Then the minimum polynomial m(x) of α divides g(x) and so it is of degree less than the degree of f(x). As f(x) is irreducible, m(x) cannot divide f(x) and so α cannot be a root of f(x). Thus f(x) and g(x) do not have a common root and so f(x) does not have a repeated root.

(iii) Prove that every extension of finite fields is separable.

Let \mathbb{F} be a finite field. We proved that every element of \mathbb{F} is a root of the polynomial $x^q - x$. But $D(x^q - x) = -1$, and so this polynomial has no repeated roots.

8. (15pts) (i) Let L/K be a finite field extension. Carefully state a criterion for L/K be separable which involves [L:K].

L/K is separable if and only if the number of ring homorphisms of L/K into a normal closure N is at least [L:K].

(ii) Is every finite separable extension of a finite separable extension, separable?

Yes. Let M/K and L/M be two finite separable extensions. Let N/L be a normal closure. Then the number of ring homorphisms $\pi\colon M\longrightarrow N$ is equal to [M:K] as M/K is separable and for each such map π , the number of ring homorphisms $\psi\colon L\longrightarrow N$ extending π is equal to [L:M], as L/M is separable. But then there at least

$$[L:K] = [L:M][M:K]$$

ring homorphisms $\pi \colon L \longrightarrow N$ over K.

(iii) Is every finite normal extension of a finite normal extension, normal?

No. Consider $K = \mathbb{Q}$, $M = \mathbb{Q}(\sqrt{2})$ and $L = \mathbb{Q}(\sqrt[4]{2})$. Then L/M and M/K are normal as they are quadratic. But $x^4 - 2$ is irreducible over \mathbb{Q} , by Eisenstein, has a root in L but does not split in L.

9. (25pts) Find the indicated Galois groups. Carefully justify your answers.

(i)
$$(x^2-2)(x^2-3)$$
 over \mathbb{Q} .

Let $L=\mathbb{Q}(\sqrt{2},\sqrt{3})$. Let $M=\mathbb{Q}(\sqrt{2})$. Now x^2-2 is irreducible by Eisenstein, applied with p=2, so that [M:K]=2. Similarly [L:M]=1 or 2, depending on whether x^2-3 is reducible over M. But if it is reducible, then L=M and $\sqrt{3}\in M$, which it is easy to check does not happen. Thus [L:K]=4. It follows that the Galois group has order 4.

On the other hand, an element of the Galois group must send a root of $x^2 - 2$ to another root, and so it must send $\sqrt{2}$ to $\pm \sqrt{2}$. Similarly for $\sqrt{3}$. As there are at most 4 such maps, and the action of an element of the Galois group is determined by its action on the $\sqrt{2}$, $\sqrt{3}$, the result follows.

(ii)
$$x^{15} - 1$$
 over \mathbb{Q} .

 Φ_{15} is irreducible over \mathbb{Q} and so the Galois group is isomorphic to U_{15} . But $U_{15} = \{1, 2, 4, 7, 8, 11, 13, 14\}$. By inspection every element has order at most 4 and there is an element of order 4 (for example 2). So this group is isomorphic to $\mathbb{Z}_4 \times \mathbb{Z}_2$.

(iii) $x^7 - 5$ over the splitting field of $x^7 - 1$ over \mathbb{Q} .

As 7 is prime, either x^7-5 is irreducible over K or it splits in K. Now x^7-5 is irreducible over $\mathbb Q$ by Eisenstein, and so the only way it could split in K, is if we adjoin a root, in which case $[K:\mathbb Q]$ would be divisible by 7. As it is not x^7-5 is irreducible over K. As x^7-1 splits in K, it follows that the Galois group is cyclic, of order 7.

(iv)
$$x^4 - 3$$
 over \mathbb{F}_5 .

 \mathbb{Z}_4 .

As we are over a finite field, the Galois must be cyclic. We only need to check that $x^4 + 2$ is irreducible. If it had a linear factor, then we would have a root. But $a^4 = 1$, if $a \neq 0$, and so there are no roots. Otherwise it factors as

$$x^4 + 2 = (x^2 + ax + b)(x^2 + cx + d).$$

Looking at the cubic term we have a + c = 0. Thus

$$x^4 + 2 = (x^2 + ax + b)(x^2 - ax + d).$$

Looking at the quadratic terms, we have $b+d=a^2$. Looking at the linear term we have ab=ad. If $a\neq 0$, then b=d, so that $b^2=2$. But 2 is not a square mod 5, impossible. Thus a=0. But then d=-b and $b^2=3$, again impossible.

Thus $x^4 + 2$ is irreducible. Let $\alpha \in L$ be a root. Then $K(\alpha)/K$ is normal, as it is an extension of finite fields and so $x^4 + 2$ splits in $K(\alpha)$. Thus $L = K(\alpha)$ and so L/K has degree four.

(v) $x^4 - 3$ over \mathbb{Q} .

 D_4 .

A splitting field is given by $L = \mathbb{Q}(\alpha, i)$ is a splitting field, where α is a root of $x^4 - 3$ and i is a square root of -1. Now $\mathbb{Q}(\alpha)/\mathbb{Q}$ has degree four, as $x^4 - 3$ is irreducible by Eisenstein. On the other hand i is not an element of $\mathbb{Q}(\alpha)$ as i is not real. Thus the degree of L/\mathbb{Q} is eight. Let $M = \mathbb{Q}(i)$. Then L/M has degree four. Thus $x^4 - 3$ is irreducible, and as $x^4 - 1$ splits in M, this is a cyclic extension of degree four (that is the Galois group is cyclic).

Let σ be the corresponding generator. Let τ be the automorphism, given as complex conjugation. Then $\sigma^4 = \tau^2 = 1$. It suffices to compute $\tau \sigma \tau$, which it is easy to see is σ^3 (compare their actions on α and i). But this is precisely a presentation for D_4 .

10. (10pts) State and prove the Fundamental Theorem of Algebra, stating carefully what you use to prove this result.

Let $f(x) \in \mathbb{C}[x]$. Then f(x) splits over \mathbb{C} .

It suffices to prove that there are no non-trivial finite extensions of \mathbb{C} . Let L/\mathbb{C} a finite extension. Passing to a normal closure over \mathbb{R} , we may assume that L/\mathbb{R} is Galois. Let G be the Galois group and let H by a Sylow 2-subgroup. Let M be the corresponding fixed field. Then M/\mathbb{R} has odd degree. Let $\alpha \in M$. Then the minimum polynomial of α has odd degree. As every odd degree real polynomial has a root, it follows that $\alpha \in \mathbb{R}$, so that $M = \mathbb{R}$.

Thus we may assume that G has degree a power of two. Replacing G by a subgroup, we may assume that G is the Galois group of L/\mathbb{C} . Suppose that G is not trivia. As G is a 2-group, it has a subgroup of index two, call it H. Let M be the corresponding field. Then M/\mathbb{C} has degree two. As every quadratic polynomial has a root (the quadratic formula), $M = \mathbb{C}$, a contradiction.

11. (10pts) Find $\Phi_4(x)$, $\Phi_6(x)$ and $\Phi_{12}(x)$ in characteristic zero.

$$x^4-1=\Phi_1(x)\Phi_2(x)\Phi_4(x)=(x^2-1)(x^2+1).$$
 Thus $\Phi_4(x)=x^2+1.$

$$x^6 - 1 = \Phi_1 \Phi_2 \Phi_3 \Phi_6 = (x^3 - 1)(x^3 + 1) = (x^3 - 1)(x + 1)(x^2 - x + 1)$$

Thus $\Phi_6(x) = x^2 - x + 1$.

$$x^{12} - 1 = \Phi_1 \Phi_2 \Phi_3 \Phi_4 \Phi_6 \Phi_{12} = (x^6 - 1)(x^6 + 1).$$

So

$$x^{6} + 1 = (x^{2} + 1)(x^{4} - x^{2} + 1) = \Phi_{2}\Phi_{12}.$$

Thus

$$\Phi_{12} = x^4 - x^2 + 1.$$

Bonus Challenge Problems

12. (10pts) If R is Noetherian then prove that the power series ring $R[\![x]\!]$ is Noetherian. (You may assume that every finitely generated module over a Noetherian ring is Noetherian).

13. (10pts) Show that any set of characters is linearly independent.

14. (10pts) Let G be a collection of automorphisms acting on a field L and let $K=L^G$ be the fixed field. Show that $[L:K]\geq |G|$.

15. (10pts) Prove that $\Phi_n(x)$ is irreducible over \mathbb{Q} .