FINAL EXAM MATH 200B, UCSD, WINTER 17

You have three hours.

There are 11 problems, and the total number of points is 170 . Show all your work. Please make your work as clear and easy to follow as possible.

Name: \qquad
Signature: \qquad
Section instructor: \qquad
Section Time: \qquad

Problem	Points	Score
1	30	
2	10	
3	10	
4	10	
5	15	
6	15	
7	20	
8	15	
9	25	
10	10	
11	10	
12	10	
13	10	
14	10	
15	10	
Total	170	

1. (30pts) (i) Give the definition of a symmetric multilinear map.

If M and N are R-modules, a function

$$
f: M^{d} \longrightarrow N
$$

is multilinear if it is linear in each variable. It is symmetric if it is invariant under switching any two entries.
(ii) Give the definition of the algebraic closure of a field K.

The field extension L / K is the algebraic closure of K, if L / K is algebraic and if every polynomial with coefficients in K, splits in L.
(iii) Give the definition of a normal extension.

An algebraic extension L / K is normal if every polynomial with coefficients in K and one zero in L splits in L.
(iv) Give the definition of a separable polynomial, a separable element and a separable extension.

A polynomial is separable, if each irreducible factor has no repeated roots. An element $\alpha \in L / K$ is separable, if its minimum polynomial over K is separable. An extension L / K is separable, if every element $\alpha \in L$ is separable over K.
(v) Give the definition of the Galois group of an extension.

The set of automorphisms of L that fix the groundfield K, considered as a subgroup of the set of all permutations of L.
(vi) Give the definition of a character.

A character is a group homomorphism

$$
\chi: G \longrightarrow K^{*}
$$

from a group G to the multiplicative group K^{*} of a field K.
2. (10pts) Let M be a Noetherian R-module. If $\phi: M \longrightarrow M$ is a surjective R-linear map, prove that ϕ is an automorphism.

Let M_{n} be the kernel of ϕ^{n}. Note that we have an ascending chain,

$$
M_{1} \subset M_{2} \subset M_{3} \subset \ldots
$$

Suppose that $M_{1} \neq 0$. We will define $m_{n} \in M_{n}-M_{n-1}$ recursively, so that $\phi\left(m_{n}\right)=m_{n-1}$. By assumption, there is $m_{1} \in M_{1}$, such that $m_{1} \neq 0$. Suppose we have defined $m_{1}, m_{2}, \ldots, m_{n}$. As ϕ is surjective, there is an $m_{n+1} \in M$ such that $\phi\left(m_{n+1}\right)=m_{n}$. As $m_{n} \in M_{n}$, it is immediate that $m_{n+1} \in M_{n+1}$ but not in M_{n}. Thus we have a strictly increasing sequence of submodules of M. This contradicts the fact that M is Noetherian.
Thus M_{1} is the trivial module and ϕ must be injective. In this case ϕ must be a bijection, so that it is an automorphism.
3. (10pts) Let M, N and P be R-modules over a ring R. Show that there is a natural isomorphism:

$$
\operatorname{Hom}_{R}(M \underset{R}{\otimes} N, P) \simeq \operatorname{Hom}_{R}\left(M, \operatorname{Hom}_{R}(N, P)\right) .
$$

By the universal property of the tensor product, an element of $\operatorname{Hom}_{R}(M \underset{R}{\otimes}$ $N, P)$ is the same as a bilinear map

$$
M \times N \longrightarrow P .
$$

If we fix $m \in M$ this gives us an R-linear map $N \longrightarrow P$, an element of $\operatorname{Hom}_{R}(N, P)$. Varying m gives us a function

$$
M \longrightarrow \operatorname{Hom}_{R}(N, P),
$$

which it is not hard to see is R-linear. Thus we get an element of $\operatorname{Hom}_{R}\left(M, \operatorname{Hom}_{R}(N, P)\right)$. It is straightforward to check that this assignment is R-linear.
Now suppose that we have an element of $\operatorname{Hom}_{R}\left(M, \operatorname{Hom}_{R}(N, P)\right)$. For every $m \in M$ we get an R-linear map $N \longrightarrow P$. This defines a function $M \times N \longrightarrow P$ which is bilinear, so that we get an element of $\operatorname{Hom}_{R}(M \underset{R}{\otimes} N, P)$. It is not hard to see that this is the inverse of the first assignment, so that we get an isomorphism:

$$
\operatorname{Hom}_{R}(M \underset{R}{\otimes} N, P) \simeq \operatorname{Hom}_{R}\left(M, \operatorname{Hom}_{R}(N, P)\right) .
$$

4. (10pts) How many conjugacy classes of 5×5 matrices over \mathbb{Q} with minimum polynomial x^{3} are there?

Two matrices are conjugate if and only if they have the same rational canonical form. So we just need to count the number of 5×5 matrices with minimal polynomial x^{3} in rational canonical form.
To guarantee the minimal polynomial is x^{3} we must have a block of the form

$$
\left(\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right)
$$

and no bigger blocks. There are then two possibilities:

$$
\left(\begin{array}{ccccc}
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right) \quad \text { and } \quad\left(\begin{array}{ccccc}
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0
\end{array}\right)
$$

5. (15pts) (i) Show that every finite subgroup of the multiplicative group of a field is cyclic.

Let G be a finite subgroup of K^{*}, where K is a field. Then G is a finite abelian group, and so, by the Fundamental Theorem of finitely generated abelian groups, G is isomorphic to

$$
\mathbb{Z}_{m_{1}} \times \mathbb{Z}_{m_{2}} \times \mathbb{Z}_{m_{3}} \times \cdots \times \mathbb{Z}_{m_{r}}
$$

where $m_{i} \mid m_{i+1}$, for every $i \leq r-1$. Thus the exponent e of G is equal to m_{r} and this is equal to the order of G if and only if G is cyclic. On the other hand, by definition of the exponent, every element of G is a root of

$$
x^{e}-1 \in K[x] .
$$

As this has at most e roots, it follows that $e \geq|G|$, so that G is indeed cyclic.
(ii) Let \mathbb{F} be a finite field with q elements. Show that \mathbb{F} is the splitting field of the polynomial $x^{q}-x$.

By (i), G the set of non-zero elements of \mathbb{F}, is cyclic of order $q-1$. Thus the elements of G are precisely the roots of the polynomial

$$
x^{q-1}-1 \in \mathbb{F}_{p}[x] .
$$

But then the elements of L are precisely the q roots of

$$
x^{q}-x .
$$

In particular L is the splitting field of $x^{q}-x$.
6. (15pts) (i) State a simple criterion for a finite field extension L / K to be normal.
L / K is normal if and only if it is the splitting field of some polynomial $f(x) \in K[x]$.
(ii) Which of the following fields extensions are normal?
(a) $\mathbb{Q}(\sqrt{2}, \sqrt{3}) / \mathbb{Q}$.

Normal, as the splitting field of $\left(x^{2}-2\right)\left(x^{2}-3\right)$.
(b) $\mathbb{Q}(\sqrt[3]{2}) / \mathbb{Q}$.

Not normal. $x^{3}-2$ has a root in L, but $x^{3}-2$ does not split in L. Indeed if $\alpha=\sqrt[3]{2}$, then the other roots are $\omega \alpha$ and $\omega^{2} \alpha$, and ω is not an element of $L \subset \mathbb{R}$.
7. (20pts) (i) Let $f(x) \in K[x]$ be a polynomial and let L / K be a splitting field for $f(x)$. Prove that $\alpha \in L / K$ is a repeated root of $f(x)$ if and only if α is a common root of $f(x)$ and $D f(x)$ (where $D f$ denotes the formal derivative).

Suppose that α is a repeated root of $f(x)$. Then we may write

$$
f(x)=(x-\alpha)^{2} g(x)
$$

where $g(x) \in L[x]$. Then

$$
D f(x)=2(x-\alpha) g(x)+(x-\alpha)^{2} D g(x)
$$

so that α is also a root of $D f(x)$.
Conversely suppose that α is a root of $f(x)$ and $D f(x)$. Then we may write

$$
f(x)=(x-\alpha) g(x),
$$

where $g(x) \in L[x]$. Then

$$
D f(x)=g(x)+(x-\alpha) D g(x)
$$

Thus α is a root of $g(x)$. But then α is a repeated root of $g(x)$.
(ii) Prove that every field extension in characteristic zero is separable.

It suffices to prove that every irreducible polynomial $f(x)$ over a field of characteristic zero does not have a repeated root. Let $g(x)$ be the formal derivative of $f(x)$. Then $g(x)$ is not the zero polynomial, as the characteristic is zero. Let α be a root of $g(x)$ in some splitting field. Then the minimum polynomial $m(x)$ of α divides $g(x)$ and so it is of degree less than the degree of $f(x)$. As $f(x)$ is irreducible, $m(x)$ cannot divide $f(x)$ and so α cannot be a root of $f(x)$. Thus $f(x)$ and $g(x)$ do not have a common root and so $f(x)$ does not have a repeated root.
(iii) Prove that every extension of finite fields is separable.

Let \mathbb{F} be a finite field. We proved that every element of \mathbb{F} is a root of the polynomial $x^{q}-x$. But $D\left(x^{q}-x\right)=-1$, and so this polynomial has no repeated roots.
8. (15pts) (i) Let L / K be a finite field extension. Carefully state a criterion for L / K be separable which involves $[L: K]$.
L / K is separable if and only if the number of ring homorphisms of L / K into a normal closure N is at least $[L: K]$.
(ii) Is every finite separable extension of a finite separable extension, separable?

Yes. Let M / K and L / M be two finite separable extensions. Let N / L be a normal closure. Then the number of ring homorphisms $\pi: M \longrightarrow$ N is equal to $[M: K]$ as M / K is separable and for each such map π, the number of ring homorphisms $\psi: L \longrightarrow N$ extending π is equal to [$L: M$], as L / M is separable. But then there at least

$$
[L: K]=[L: M][M: K]
$$

ring homorphisms $\pi: L \longrightarrow N$ over K.
(iii) Is every finite normal extension of a finite normal extension, normal?

No. Consider $K=\mathbb{Q}, M=\mathbb{Q}(\sqrt{2})$ and $L=\mathbb{Q}(\sqrt[4]{2})$. Then L / M and M / K are normal as they are quadratic. But $x^{4}-2$ is irreducible over \mathbb{Q}, by Eisenstein, has a root in L but does not split in L.
9. (25pts) Find the indicated Galois groups. Carefully justify your answers.
(i) $\left(x^{2}-2\right)\left(x^{2}-3\right)$ over \mathbb{Q}.

Let $L=\mathbb{Q}(\sqrt{2}, \sqrt{3})$. Let $M=\mathbb{Q}(\sqrt{2})$. Now $x^{2}-2$ is irreducible by Eisenstein, applied with $p=2$, so that $[M: K]=2$. Similarly $[L: M]=1$ or 2 , depending on whether $x^{2}-3$ is reducible over M. But if it is reducible, then $L=M$ and $\sqrt{3} \in M$, which it is easy to check does not happen. Thus $[L: K]=4$. It follows that the Galois group has order 4.
On the other hand, an element of the Galois group must send a root of $x^{2}-2$ to another root, and so it must send $\sqrt{2}$ to $\pm \sqrt{2}$. Similarly for $\sqrt{3}$. As there are at most 4 such maps, and the action of an element of the Galois group is determined by its action on the $\sqrt{2}, \sqrt{3}$, the result follows.
(ii) $x^{15}-1$ over \mathbb{Q}.
Φ_{15} is irreducible over \mathbb{Q} and so the Galois group is isomorphic to U_{15}. But $U_{15}=\{1,2,4,7,8,11,13,14\}$. By inspection every element has order at most 4 and there is an element of order 4 (for example 2). So this group is isomorphic to $\mathbb{Z}_{4} \times \mathbb{Z}_{2}$.
(iii) $x^{7}-5$ over the splitting field of $x^{7}-1$ over \mathbb{Q}.

As 7 is prime, either $x^{7}-5$ is irreducible over K or it splits in K. Now $x^{7}-5$ is irreducible over \mathbb{Q} by Eisenstein, and so the only way it could split in K, is if we adjoin a root, in which case $[K: \mathbb{Q}]$ would be divisible by 7 . As it is not $x^{7}-5$ is irreducible over K. As $x^{7}-1$ splits in K, it follows that the Galois group is cyclic, of order 7 .
(iv) $x^{4}-3$ over \mathbb{F}_{5}.
\mathbb{Z}_{4}.
As we are over a finite field, the Galois must be cyclic. We only need to check that $x^{4}+2$ is irreducible. If it had a linear factor, then we would have a root. But $a^{4}=1$, if $a \neq 0$, and so there are no roots.
Otherwise it factors as

$$
x^{4}+2=\left(x^{2}+a x+b\right)\left(x^{2}+c x+d\right) .
$$

Looking at the cubic term we have $a+c=0$. Thus

$$
x^{4}+2=\left(x^{2}+a x+b\right)\left(x^{2}-a x+d\right) .
$$

Looking at the quadratic terms, we have $b+d=a^{2}$. Looking at the linear term we have $a b=a d$. If $a \neq 0$, then $b=d$, so that $b^{2}=2$. But 2 is not a square $\bmod 5$, impossible. Thus $a=0$. But then $d=-b$ and $b^{2}=3$, again impossible.
Thus $x^{4}+2$ is irreducible. Let $\alpha \in L$ be a root. Then $K(\alpha) / K$ is normal, as it is an extension of finite fields and so $x^{4}+2$ splits in $K(\alpha)$. Thus $L=K(\alpha)$ and so L / K has degree four.
(v) $x^{4}-3$ over \mathbb{Q}.
D_{4}.
A splitting field is given by $L=\mathbb{Q}(\alpha, i)$ is a splitting field, where α is a root of $x^{4}-3$ and i is a square root of -1 . Now $\mathbb{Q}(\alpha) / \mathbb{Q}$ has degree four, as $x^{4}-3$ is irreducible by Eisenstein. On the other hand i is not an element of $\mathbb{Q}(\alpha)$ as i is not real. Thus the degree of L / \mathbb{Q} is eight. Let $M=\mathbb{Q}(i)$. Then L / M has degree four. Thus $x^{4}-3$ is irreducible, and as $x^{4}-1$ splits in M, this is a cyclic extension of degree four (that is the Galois group is cyclic).
Let σ be the corresponding generator. Let τ be the automorphism, given as complex conjugation. Then $\sigma^{4}=\tau^{2}=1$. It suffices to compute $\tau \sigma \tau$, which it is easy to see is σ^{3} (compare their actions on α and i). But this is precisely a presentation for D_{4}.
10. (10pts) State and prove the Fundamental Theorem of Algebra, stating carefully what you use to prove this result.

Let $f(x) \in \mathbb{C}[x]$. Then $f(x)$ splits over \mathbb{C}.
It suffices to prove that there are no non-trivial finite extensions of \mathbb{C}. Let L / \mathbb{C} a finite extension. Passing to a normal closure over \mathbb{R}, we may assume that L / \mathbb{R} is Galois. Let G be the Galois group and let H by a Sylow 2 -subgroup. Let M be the corresponding fixed field. Then M / \mathbb{R} has odd degree. Let $\alpha \in M$. Then the minimum polynomial of α has odd degree. As every odd degree real polynomial has a root, it follows that $\alpha \in \mathbb{R}$, so that $M=\mathbb{R}$.
Thus we may assume that G has degree a power of two. Replacing G by a subgroup, we may assume that G is the Galois group of L / \mathbb{C}. Suppose that G is not trivia. As G is a 2-group, it has a subgroup of index two, call it H. Let M be the corresponding field. Then M / \mathbb{C} has degree two. As every quadratic polynomial has a root (the quadratic formula), $M=\mathbb{C}$, a contradiction.
11. (10pts) Find $\Phi_{4}(x), \Phi_{6}(x)$ and $\Phi_{12}(x)$ in characteristic zero.

$$
x^{4}-1=\Phi_{1}(x) \Phi_{2}(x) \Phi_{4}(x)=\left(x^{2}-1\right)\left(x^{2}+1\right) .
$$

Thus $\Phi_{4}(x)=x^{2}+1$.

$$
x^{6}-1=\Phi_{1} \Phi_{2} \Phi_{3} \Phi_{6}=\left(x^{3}-1\right)\left(x^{3}+1\right)=\left(x^{3}-1\right)(x+1)\left(x^{2}-x+1\right)
$$

Thus $\Phi_{6}(x)=x^{2}-x+1$.

$$
x^{12}-1=\Phi_{1} \Phi_{2} \Phi_{3} \Phi_{4} \Phi_{6} \Phi_{12}=\left(x^{6}-1\right)\left(x^{6}+1\right) .
$$

So

$$
x^{6}+1=\left(x^{2}+1\right)\left(x^{4}-x^{2}+1\right)=\Phi_{2} \Phi_{12} .
$$

Thus

$$
\Phi_{12}=x^{4}-x^{2}+1
$$

Bonus Challenge Problems

12. (10pts) If R is Noetherian then prove that the power series ring $R \llbracket x \rrbracket$ is Noetherian. (You may assume that every finitely generated module over a Noetherian ring is Noetherian).
13. (10pts) Show that any set of characters is linearly independent.
14. (10pts) Let G be a collection of automorphisms acting on a field L and let $K=L^{G}$ be the fixed field. Show that $[L: K] \geq|G|$.
15. (10pts) Prove that $\Phi_{n}(x)$ is irreducible over \mathbb{Q}.
