
FINAL EXAM

MATH 200B, UCSD, WINTER 17

You have three hours.

There are 11 problems, and the total number of

points is 170. Show all your work. Please make

your work as clear and easy to follow as possible.

Name:

Signature:

Section instructor:

Section Time:

Problem Points Score

1 30

2 10

3 10

4 10

5 15

6 15

7 20

8 15

9 25

10 10

11 10

12 10

13 10

14 10

15 10

Total 170
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1. (30pts) (i) Give the definition of a symmetric multilinear map.

If M and N are R-modules, a function

f : Md −→ N

is multilinear if it is linear in each variable. It is symmetric if it is
invariant under switching any two entries.

(ii) Give the definition of the algebraic closure of a field K.

The field extension L/K is the algebraic closure of K, if L/K is alge-
braic and if every polynomial with coefficients in K, splits in L.

(iii) Give the definition of a normal extension.

An algebraic extension L/K is normal if every polynomial with coeffi-
cients in K and one zero in L splits in L.
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(iv) Give the definition of a separable polynomial, a separable element
and a separable extension.

A polynomial is separable, if each irreducible factor has no repeated
roots. An element α ∈ L/K is separable, if its minimum polynomial
over K is separable. An extension L/K is separable, if every element
α ∈ L is separable over K.

(v) Give the definition of the Galois group of an extension.

The set of automorphisms of L that fix the groundfield K, considered
as a subgroup of the set of all permutations of L.

(vi) Give the definition of a character.

A character is a group homomorphism

χ : G −→ K∗

from a group G to the multiplicative group K∗ of a field K.
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2. (10pts) Let M be a Noetherian R-module. If φ : M −→ M is a
surjective R-linear map, prove that φ is an automorphism.

Let Mn be the kernel of φn. Note that we have an ascending chain,

M1 ⊂M2 ⊂M3 ⊂ . . . .

Suppose that M1 6= 0. We will define mn ∈ Mn −Mn−1 recursively,
so that φ(mn) = mn−1. By assumption, there is m1 ∈ M1, such that
m1 6= 0. Suppose we have defined m1,m2, . . . ,mn. As φ is surjective,
there is an mn+1 ∈ M such that φ(mn+1) = mn. As mn ∈ Mn, it is
immediate that mn+1 ∈ Mn+1 but not in Mn. Thus we have a strictly
increasing sequence of submodules ofM . This contradicts the fact that
M is Noetherian.
Thus M1 is the trivial module and φ must be injective. In this case φ
must be a bijection, so that it is an automorphism.
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3. (10pts) Let M , N and P be R-modules over a ring R. Show that
there is a natural isomorphism:

HomR(M ⊗
R
N,P ) ≃ HomR(M,HomR(N,P )).

By the universal property of the tensor product, an element of HomR(M⊗
R

N,P ) is the same as a bilinear map

M ×N −→ P.

If we fix m ∈ M this gives us an R-linear map N −→ P , an element
of HomR(N,P ). Varying m gives us a function

M −→ HomR(N,P ),

which it is not hard to see is R-linear. Thus we get an element of
HomR(M,HomR(N,P )). It is straightforward to check that this as-
signment is R-linear.
Now suppose that we have an element of HomR(M,HomR(N,P )). For
every m ∈ M we get an R-linear map N −→ P . This defines a func-
tion M × N −→ P which is bilinear, so that we get an element of
HomR(M ⊗

R
N,P ). It is not hard to see that this is the inverse of the

first assignment, so that we get an isomorphism:

HomR(M ⊗
R
N,P ) ≃ HomR(M,HomR(N,P )).
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4. (10pts) How many conjugacy classes of 5× 5 matrices over Q with
minimum polynomial x3 are there?

Two matrices are conjugate if and only if they have the same rational
canonical form. So we just need to count the number of 5× 5 matrices
with minimal polynomial x3 in rational canonical form.
To guarantee the minimal polynomial is x3 we must have a block of
the form





0 1 0
0 0 1
0 0 0





and no bigger blocks. There are then two possibilities:












0 1 0 0 0
0 0 1 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0













and













0 1 0 0 0
0 0 1 0 0
0 0 0 0 0
0 0 0 0 1
0 0 0 0 0













.
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5. (15pts) (i) Show that every finite subgroup of the multiplicative group
of a field is cyclic.

Let G be a finite subgroup of K∗, where K is a field. Then G is a
finite abelian group, and so, by the Fundamental Theorem of finitely
generated abelian groups, G is isomorphic to

Zm1
× Zm2

× Zm3
× · · · × Zmr

,

where mi|mi+1, for every i ≤ r− 1. Thus the exponent e of G is equal
to mr and this is equal to the order of G if and only if G is cyclic. On
the other hand, by definition of the exponent, every element of G is a
root of

xe − 1 ∈ K[x].

As this has at most e roots, it follows that e ≥ |G|, so that G is indeed
cyclic.

(ii) Let F be a finite field with q elements. Show that F is the splitting
field of the polynomial xq − x.

By (i), G the set of non-zero elements of F, is cyclic of order q − 1.
Thus the elements of G are precisely the roots of the polynomial

xq−1 − 1 ∈ Fp[x].

But then the elements of L are precisely the q roots of

xq − x.

In particular L is the splitting field of xq − x.
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6. (15pts) (i) State a simple criterion for a finite field extension L/K
to be normal.

L/K is normal if and only if it is the splitting field of some polynomial
f(x) ∈ K[x].

(ii) Which of the following fields extensions are normal?
(a) Q(

√
2,
√
3)/Q.

Normal, as the splitting field of (x2 − 2)(x2 − 3).

(b) Q( 3
√
2)/Q.

Not normal. x3 − 2 has a root in L, but x3 − 2 does not split in L.
Indeed if α = 3

√
2, then the other roots are ωα and ω2α, and ω is not

an element of L ⊂ R.
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7. (20pts) (i) Let f(x) ∈ K[x] be a polynomial and let L/K be a
splitting field for f(x). Prove that α ∈ L/K is a repeated root of f(x)
if and only if α is a common root of f(x) and Df(x) (where Df denotes
the formal derivative).

Suppose that α is a repeated root of f(x). Then we may write

f(x) = (x− α)2g(x),

where g(x) ∈ L[x]. Then

Df(x) = 2(x− α)g(x) + (x− α)2Dg(x),

so that α is also a root of Df(x).
Conversely suppose that α is a root of f(x) and Df(x). Then we may
write

f(x) = (x− α)g(x),

where g(x) ∈ L[x]. Then

Df(x) = g(x) + (x− α)Dg(x).

Thus α is a root of g(x). But then α is a repeated root of g(x).

8



(ii) Prove that every field extension in characteristic zero is separable.

It suffices to prove that every irreducible polynomial f(x) over a field
of characteristic zero does not have a repeated root. Let g(x) be the
formal derivative of f(x). Then g(x) is not the zero polynomial, as the
characteristic is zero. Let α be a root of g(x) in some splitting field.
Then the minimum polynomial m(x) of α divides g(x) and so it is of
degree less than the degree of f(x). As f(x) is irreducible, m(x) cannot
divide f(x) and so α cannot be a root of f(x). Thus f(x) and g(x) do
not have a common root and so f(x) does not have a repeated root.

(iii) Prove that every extension of finite fields is separable.

Let F be a finite field. We proved that every element of F is a root of
the polynomial xq − x. But D(xq − x) = −1, and so this polynomial
has no repeated roots.
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8. (15pts) (i) Let L/K be a finite field extension. Carefully state a
criterion for L/K be separable which involves [L : K].

L/K is separable if and only if the number of ring homorphisms of
L/K into a normal closure N is at least [L : K].

(ii) Is every finite separable extension of a finite separable extension,
separable?

Yes. Let M/K and L/M be two finite separable extensions. Let N/L
be a normal closure. Then the number of ring homorphisms π : M −→
N is equal to [M : K] as M/K is separable and for each such map π,
the number of ring homorphisms ψ : L −→ N extending π is equal to
[L :M ], as L/M is separable. But then there at least

[L : K] = [L :M ][M : K]

ring homorphisms π : L −→ N over K.

(iii) Is every finite normal extension of a finite normal extension, nor-
mal?

No. Consider K = Q, M = Q(
√
2) and L = Q( 4

√
2). Then L/M and

M/K are normal as they are quadratic. But x4 − 2 is irreducible over
Q, by Eisenstein, has a root in L but does not split in L.
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9. (25pts) Find the indicated Galois groups. Carefully justify your
answers.
(i) (x2 − 2)(x2 − 3) over Q.

Let L = Q(
√
2,
√
3). Let M = Q(

√
2). Now x2 − 2 is irreducible

by Eisenstein, applied with p = 2, so that [M : K] = 2. Similarly
[L : M ] = 1 or 2, depending on whether x2 − 3 is reducible over M .
But if it is reducible, then L = M and

√
3 ∈ M , which it is easy to

check does not happen. Thus [L : K] = 4. It follows that the Galois
group has order 4.
On the other hand, an element of the Galois group must send a root of
x2 − 2 to another root, and so it must send

√
2 to ±

√
2. Similarly for√

3. As there are at most 4 such maps, and the action of an element of
the Galois group is determined by its action on the

√
2,

√
3, the result

follows.

(ii) x15 − 1 over Q.

Φ15 is irreducible over Q and so the Galois group is isomorphic to U15.
But U15 = {1, 2, 4, 7, 8, 11, 13, 14}. By inspection every element has
order at most 4 and there is an element of order 4 (for example 2). So
this group is isomorphic to Z4 × Z2.
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(iii) x7 − 5 over the splitting field of x7 − 1 over Q.

As 7 is prime, either x7 − 5 is irreducible over K or it splits in K.
Now x7 − 5 is irreducible over Q by Eisenstein, and so the only way it
could split in K, is if we adjoin a root, in which case [K : Q] would be
divisible by 7. As it is not x7− 5 is irreducible over K. As x7− 1 splits
in K, it follows that the Galois group is cyclic, of order 7.

(iv) x4 − 3 over F5.

Z4.
As we are over a finite field, the Galois must be cyclic. We only need
to check that x4 + 2 is irreducible. If it had a linear factor, then we
would have a root. But a4 = 1, if a 6= 0, and so there are no roots.
Otherwise it factors as

x4 + 2 = (x2 + ax+ b)(x2 + cx+ d).

Looking at the cubic term we have a+ c = 0. Thus

x4 + 2 = (x2 + ax+ b)(x2 − ax+ d).

Looking at the quadratic terms, we have b + d = a2. Looking at the
linear term we have ab = ad. If a 6= 0, then b = d, so that b2 = 2. But
2 is not a square mod 5, impossible. Thus a = 0. But then d = −b
and b2 = 3, again impossible.
Thus x4 + 2 is irreducible. Let α ∈ L be a root. Then K(α)/K is
normal, as it is an extension of finite fields and so x4+2 splits in K(α).
Thus L = K(α) and so L/K has degree four.
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(v) x4 − 3 over Q.

D4.
A splitting field is given by L = Q(α, i) is a splitting field, where α is
a root of x4 − 3 and i is a square root of −1. Now Q(α)/Q has degree
four, as x4 − 3 is irreducible by Eisenstein. On the other hand i is not
an element of Q(α) as i is not real. Thus the degree of L/Q is eight.
Let M = Q(i). Then L/M has degree four. Thus x4 − 3 is irreducible,
and as x4− 1 splits in M , this is a cyclic extension of degree four (that
is the Galois group is cyclic).
Let σ be the corresponding generator. Let τ be the automorphism,
given as complex conjugation. Then σ4 = τ 2 = 1. It suffices to compute
τστ , which it is easy to see is σ3 (compare their actions on α and i).
But this is precisely a presentation for D4.
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10. (10pts) State and prove the Fundamental Theorem of Algebra, stat-
ing carefully what you use to prove this result.

Let f(x) ∈ C[x]. Then f(x) splits over C.
It suffices to prove that there are no non-trivial finite extensions of C.
Let L/C a finite extension. Passing to a normal closure over R, we
may assume that L/R is Galois. Let G be the Galois group and let H
by a Sylow 2-subgroup. Let M be the corresponding fixed field. Then
M/R has odd degree. Let α ∈ M . Then the minimum polynomial of
α has odd degree. As every odd degree real polynomial has a root, it
follows that α ∈ R, so that M = R.
Thus we may assume that G has degree a power of two. Replacing
G by a subgroup, we may assume that G is the Galois group of L/C.
Suppose that G is not trivia. As G is a 2-group, it has a subgroup of
index two, call it H. LetM be the corresponding field. ThenM/C has
degree two. As every quadratic polynomial has a root (the quadratic
formula), M = C, a contradiction.
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11. (10pts) Find Φ4(x), Φ6(x) and Φ12(x) in characteristic zero.

x4 − 1 = Φ1(x)Φ2(x)Φ4(x) = (x2 − 1)(x2 + 1).

Thus Φ4(x) = x2 + 1.

x6 − 1 = Φ1Φ2Φ3Φ6 = (x3 − 1)(x3 + 1) = (x3 − 1)(x+ 1)(x2 − x+ 1)

Thus Φ6(x) = x2 − x+ 1.

x12 − 1 = Φ1Φ2Φ3Φ4Φ6Φ12 = (x6 − 1)(x6 + 1).

So
x6 + 1 = (x2 + 1)(x4 − x2 + 1) = Φ2Φ12.

Thus
Φ12 = x4 − x2 + 1.
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Bonus Challenge Problems

12. (10pts) If R is Noetherian then prove that the power series ring
RJxK is Noetherian. (You may assume that every finitely generated
module over a Noetherian ring is Noetherian).
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13. (10pts) Show that any set of characters is linearly independent.
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14. (10pts) Let G be a collection of automorphisms acting on a field L
and let K = LG be the fixed field. Show that [L : K] ≥ |G|.
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15. (10pts) Prove that Φn(x) is irreducible over Q.
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