
9. More about induction

Here we collect some more sophisticated topics centred around in-
duction. First of all, how to find a formula for the sum of the first n
squares?

12 + 22 + 32 + · · · + n2 =?

By analogy with the other cases, we first guess that the sum is a
polynomial in n. Now we have n terms and each term is at most n2.
Therefore the sum is at most n3. So it looks as though we have a
polynomial of degree at most 3 (on the other hand, half of the terms
are at least (n/2)2 = n2/4 and so the sum is at least

n2/4 · n/2 = n3/8,

so almost certainly the formula involves a cubic polynomial).
If we imagine plugging in n = 0 then there are no terms in the sum

and so the LHS is zero. But then our polynomial of degree 3 is divisible
by n. The general such polynomial is

n(an2 + bn + c)

and it is our job to determine a, b and c. We plug in small values of n
to determine a, b and c. If n = 1 the LHS is 1. Thus

a + b + c = 1.

If n = 2 the LHS is 5 and so

2(4a + 2b + c) = 5.

If we multiply the first equation by 2 and subtract we get:

2(3a + b) = 3.

If n = 3 the LHS is 14 and so

3(9a + 3b + c) = 14.

Multiplying the first equation by 3 and subtracting we get

3(8a + 2b) = 11.

If we take the other equation involving only a and b, multiply by 3 and
subtract, we get

3(2a) = 2.

Therefore a = 1/3. It follows that b = 1/2 and so c = 1/6. We guess a
formula of the form

12 + 22 + 32 + · · · + n2 =
n(2n2 + 3n + 1)

6
=

n(n + 1)(2n + 1)

6
.

It is a homework problem to prove this is correct.
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Sometimes one can do a double induction:

Theorem 9.1. For all non-negative integers m and n we have

Fm+n+1 = FmFn + Fm+1Fn+1.

Proof. Let P (m,n) be the statement that

Fm+n+1 = FmFn + Fm+1Fn+1.

We prove this by double (strong) induction on m and n.
We have to check three things. We have to check that P (0, 0),

P (1, 0), P (0, 1) and P (1, 1) all hold and and that P (i, j) for all i ≤ p
and j ≤ q implies both P (p + 1, q) and P (p, q + 1).

We first check that P (0, 0), P (1, 0), P (0, 1) and P (1, 1) all hold.
When m = n = 0 the LHS of the equation is

Fm+n+1 = F0+0+1 = F1 = 1

and the RHS of the equation is

FmFn + Fm+1Fn+1 = F0F0 + F1F1 = 0 + 1 = 1.

As both sides are equal, P (0, 0) holds.
When m = 1 and n = 0, the LHS of the equation is

Fm+n+1 = F1+0+1 = F2 = 1

and the RHS of the equation is

FmFn + Fm+1Fn+1 = F1F0 + F2F1 = 0 + 1 = 1.

As both sides are equal, P (1, 0) holds. By symmetry, P (0, 1) also holds.
When m = 1 and n = 1, the LHS of the equation is

Fm+n+1 = F1+1+1 = F3 = 2,

and the RHS of the equation is

FmFn + Fm+1Fn+1 = F1F1 + F2F2 = 1 + 1 = 2.

As both sides are equal, P (1, 1) holds.
Thus P (0, 0), P (1, 0), P (0, 1) and P (1, 1) all hold.
Now assume that P (i, j) holds for all i ≤ p and j ≤ q. Suppose that

p ≥ 1. Let us show that P (p + 1, q) holds. We have

Fp+q+2 = Fp+q + Fp+q+1

= Fp−1Fq + FpFq+1 + FpFq + Fp+1Fq+1

= Fp−1Fq + FpFq + FpFq+1 + Fp+1Fq+1

= (Fp−1 + Fp)Fq + (Fp + Fp+1)Fq+1

= Fp+1Fq + Fp+2Fq+1,
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where we used the recursive definition of the Fibonacci numbers for
the first line, the inductive hypotheses P (p − 1, q) and P (p, q) to get
from the first line to the second line, and the recursive definition of the
Fibonacci numbers to get from the fourth line to the fifth line.

Therefore P (p+ 1, q) holds. We have shown that P (i, j) for all i ≤ p
and j ≤ q implies P (p+1, q). By symmetry, it follows that we can also
deduce P (p, q + 1) using the same hypotheses.

It follows by induction that P (m,n) holds for all non-negative inte-
gers m and n, that is,

Fm+n+1 = FmFn + Fm+1Fn+1. �
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