
19. Cardinal arithmetic

Definition 19.1. Let A and B be two sets. We write |A| ≤ |B| if there
is an injective function f : A −→ B.

We write |A| < |B| if in addition there is no surjective function
g : A −→ B.

Lemma 19.2. Let A, B and C be three sets.

(1) |A| ≤ |B| and |B| ≤ |A| if and only if |A| = |B|.
(2) If |A| ≤ |B| and |B| ≤ |C| then |A| ≤ |C|.

Proof. We first prove (1). ( ⇐= ) is easy; if f : A −→ B is a bijection
then f is invertible. The inverse g : B −→ A is a bijection. In particular
f and g are injective.

Now we turn to ( =⇒ ). As |A| ≤ |B| there is an injective map
f : A −→ B. As |B| ≤ |A| there is an injective map g : B −→ A. By
(18.2) A and B have the same cardinality, so that |A| = |B|. This is
(1).

We now prove (2).
As |A| ≤ |B| there is an injective map f : A −→ B. As |B| ≤ |C|

there is an injective map g : B −→ C. The composition g ◦f : A −→ C
is an injective map from A to C. Therefore |A| ≤ |C|. �

Theorem 19.3 (Cantor’s Theorem). If A is a set then

|A| < |℘(A)|.

Proof. Suppose the result does not hold. The function

g : A −→ ℘(A),

which sends an element a of A to the singleton set which contains a,

g(a) = { a }

is easily seen to be injective.
Therefore there is a surjection f : A −→ ℘(A). We will derive a

contradiction.
Let

B = { a ∈ A | a /∈ f(a) }.
Then B ⊂ A so that B ∈ ℘(A). As f is surjective, it follows that we
may find b ∈ A such that f(b) = B.

There are two cases. First suppose that b ∈ B. Then b ∈ f(b) so
that b /∈ B, by definition of B. This is a contradiction.

Otherwise b /∈ B. Then b /∈ f(b) so that b ∈ B, by definition of B.
This is a contradiction.
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Either way we get a contradiction and so there is no surjective func-
tion. Thus the cardinality of the powerset is greater than the cardinal-
ity of A. �

Corollary 19.4. ℘(Z) is uncountable.

Proof. This is immediate from (19.3). �

In fact we already showed that the powerset of the integers is in
bijection with (0, 1). So (19.4) is another proof of the fact that the
reals are uncountable.

Here is one way to view all of this. We can define addition of cardi-
nals by taking the cardinality of the disjoint union of two sets of the
appropriate cardinality.

Definition 19.5. ℵ0 is the cardinality of the natural numbers.

We have
ℵ0 + ℵ0 = ℵ0,

since the even and odd integers have cardinality ℵ0 and their union is
the integers, which has cardinality ℵ0.

We can also define the product of two cardinals, by taking the car-
dinality of the product of two sets of the appropriate cardinality. We
have

ℵ0 · ℵ0 = ℵ0,
since

|N× N| = |N|.
and the cardinality of the natural numbers is ℵ0.

Theorem 19.6.
|R× R| = |R|.

Proof. It is enough to prove that

|(0, 1)× (0, 1)| = |(0, 1)|,
since |R| = |(0, 1)|. Let

f : (0, 1) −→ (0, 1)× (0, 1)

be the function which sends a real number

a = 0.a1a2a2 = 0.r1s1r2s2r3s3 . . . ,

to the pair of real numbers

r = 0.a1a2a5 . . . and s = 0.a2s4s6 . . . .

Now define a function

g : (0, 1)× (0, 1) −→ (0, 1)
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in the following way. Given a pair of real numbers (r, s), write down
their decimal expansions:

r = 0.r1r2r3 . . . and s = 0.s1s2s3 . . . .

Let

a = 0.a1a2a2 = 0.r1s1r2s2r3s3 . . . ,

so that the nth digit of a is defined as follows:

an =

{
sk if n = 2k is even

rk if n = 2k − 1 is odd.

The function g sends the pair (r, s) to the real number a ∈ (0, 1).
It is not hard to see that f and g are inverses of each other. Thus f

is invertible and so it is a bijection. �

In words f simply divides the digits of a into their odd and even
parts to get r and s. g reverses this process by interleaving the digits
of r and s to get the digits of a. Note that f and g are far from being
continuous.

We can define cardinal exponentiation, by taking the cardinality of
the set of all functions between two sets of the appropriate cardinal-
ity. Cantor’s theorem then says that something dramatically different
happens in the case of exponentiation. Recall the power set of X is in
bijection with the set of functions from X to 2, 2X . We then have

2ℵ0 = |2N|

= |℘(N)|

> |N|

= ℵ0.

Starting with ℵ0 we can exponentiate to get more and more infi-
nite cardinals. We already saw that 2ℵ0 is the cardinality of the real
numbers. Cantor spent his whole life trying to prove:

Conjecture 19.7 (Continuum hypothesis). There are no cadinals i
between ℵ0 and 2ℵ0, that is, if

ℵ0 ≤ i < 2ℵ0

then i = ℵ0.

Around sixty years after Cantor made this conjecture, the following
was proved:
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Theorem 19.8 (Kurt Gödel). There is a model of set theory in which
the continuum hypothesis is true.

However thirty years later:

Theorem 19.9 (Paul Cohen). There is a model of set theory in which
the continuum hypothesis is false.

In other words, the continuum hypothesis is independent of the other
axioms of set theory. We get to choose if we want it to be true or not.

We end this section with a proof of Schröder-Bernstein:

Proof of (18.2). There is no harm in assuming that A and B have no
elements in common. We label the elements x of A ∪ B with three
different colours, red, blue and green, determined by the ancestry of
the element. We colour the elements of A∪B recursively, that is, step
by step.

If x ∈ A and there is no element y of B such that g(y) = x then
we label x red. If x ∈ B and there is no element y of A such that
f(y) = x then we label y blue. This is the zeroth step. Suppose that
the elements we have coloured are A0 ∪B0.

If y ∈ B0, so that y is coloured blue, then we colour x = g(y) ∈ A
blue as well. If y ∈ A0, so that y is coloured red, then we colour
x = f(y) ∈ B red. We have now coloured the elements of A ∪ B that
can trace their lineage one step back. Call these elements A1∪B1. This
is the first step.

Suppose we have defined A0, A1, A2, . . . , An and B0, B1, B2, . . . , Bn.
We let An+1 = g(Bn) and Bn+1 = f(An) and use the same colours, that
is we colour Bn+1 the same colour as An and An+1 the same colour as
Bn. This is the nth step.

At the end of this process we have defined two infinite sequences

A0, A1, A2, . . . and B0, B1, B2, . . . .

We coloured the elements of the first sequence with even indices and the
elements of the second sequence with odd indices, red, and we coloured
the elements of the first sequence with odd indices and the elements of
the second second with even indices, blue.

If there are any elements of A∪B which are not coloured red or blue
at the end of this process then we colour these elements green. These
are the elements of A ∪B which have infinitely many ancestors.

Define a function

h : A −→ B,
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by the following rule:

h(a) =


f(a) if a is coloured red

b if a is coloured blue and g(b) = a

f(a) if a is coloured green.

We check that h is a bijection. Note that f and g preserve the red-blue-
green colouring. If a ∈ A then a and f(a) have the same colouring.
If a is red or blue then f(a) is red or blue by definition. If a is green
then a has infinitely many ancestors and so f(a) has infinitely many
ancestors. But then f(a) is green. Thus h preserves the red-blue-green
colouring as well.

First we check injectivity. Suppose h(a1) = h(a2). Then a1 and a2
have the same colour. If they are both red or green then h(ai) = f(ai)
and so f(a1) = f(a2). But then a1 = a2 as f is injective. If a1 and a2
are both blue then a1 = g(b) = a2, where b = h(a1) = h(a2). Thus h is
injective.

Now we check surjectivity. Suppose that b ∈ B. If b is red or green
then we may find a ∈ A such that f(a) = b. In this case h(a) = f(a) =
b. If b is blue then let g(b) = a. Then a is blue and so h(a) = b, by
definition of h. Thus h is surjective.

Thus h is a bijection. �
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