
18. Countable and uncountable

The first really interesting result about two sets having the same
cardinality is the following:

Proposition 18.1. N and N× N have the same cardinality.

Proof. We have to define a bijection

f : N −→ N× N.
The easiest way to prove this is by a picture. �

Since proofs by pictures are not really supposed to be allowed, we
need another way to prove (18.1). The following is very useful:

Theorem 18.2 (Schröder-Bernstein). If A and B are two sets and
f : A −→ B and g : B −→ A are two injective functions then A and B
have the same cardinality.

Proof of (18.1). Aliter We just find injective functions both ways.
The function

f : N −→ N× N given by f(n) = (n, 0),

is clearly injective. Consider the function

g : N× N −→ N given by g(a, b) = 2a3b.

Suppose that g(a, b) = g(c, d). Then 2a3b = 2c3d. Comparing powers
of two and powers of three, we must have a = c and b = d (see (18.3)).
Thus g is injective, since factorisation of natural numbers into primes
is injective. Now apply (18.2). �

Theorem 18.3 (Fundamental Theorem of Arithmetic). Every integer
n ∈ Z has a factorisation into a product of ±1 and primes,

n = ±pk11 pk22 . . . pknn .

This factorisation is unique, if we order the primes in ascending order.

Theorem 18.4. The set of rational numbers Q is countable.

Proof. The natural inclusion

i : Z −→ Q given by i(n) = n,

is an injective map.
Define a map

f : Q −→ Z× Z,
by sending the rational number q to the pair (a, b), where b > 0 and
q = a/b and a and b are coprime, that is, they have no common prime
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factors. Suppose that f(q1) = f(q2). If f(qi) = (ai, bi), i = 1, 2, then
(a1, b1) = (a2, b2) so that

q1 =
a1
b1

=
a2
b2

= q2.

Thus f is injective. We have already seen that Z×Z is countable and so
there is an injective map Z×Z −→ Z. The composition g◦f : Q −→ Z
is an injective map, as the composition of injective maps is injective.

Now apply (18.2) to conclude that Q is countable. �

Theorem 18.5 (Cantor’s diagonalisation argument). The real num-
bers are uncountable.

Uncountable means not countable.
We will need a basic result about how to represent real numbers,

which we will accept without proof:

Lemma 18.6. Every real number r has a decimal expansion, so that
we can write

r = n + 0.d1d2 . . . ,

where n ∈ Z is an integer and the digits d1, d2, . . . are integers between
zero and 9. Moreover, given any k, we may find a digit dl 6= 9, l > k.

The last statement just means we can always replace repeating 9’s.

0.99999 · · · = 1,

and so on.

Proof of (18.5). Suppose not, suppose that the real numbers are count-
able. Then there would be a surjective function f : N −→ R. Then we
get a list of all real numbers, r0, r1, r2, . . . , where ri = f(i). Imagine
making an actual list of these numbers

r0 = m0 + 0.a01a02a03 . . .

r1 = m1 + 0.a11a12a13 . . .

r2 = m2 + 0.a21a22a23 . . .

... =
...

rn = mn + 0.an1an2an3 . . . .

We construct another real number r,

r = m + 0.a1a2a3 . . . ,
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as follows.
If the integer part m0 of r0 is not zero, then we let the integer part m

of r be zero. If the integer part m0 of r0 is zero then we let the integer
part m of r be one. Thus r ∈ [0, 2]. The digits a1, a2, . . . of r take on
two posible values one or two. To decide the value of each digit ai we
consider the corresponding real number ri in our list.

If the first digit a11 of r1 is not one then we let the first digit a1 of r
be one. If the first digit a11 of r1 is one then we let the first digit a1 of
r1 be two.

If the second digit a22 of r2 is not one then we let the second digit a2
of r be one. If the first digit a22 of r2 is one then we let the first digit
a2 of r2 be two.

In general, we define the nth digit an of r as follows:

an =

{
1 if ann 6= 1

2 if ann = 1.

As f is surjective there is a natural number n such that f(n) = r,
that is, r = rn. Suppose that n = 0. There are two cases. Either
m = 0 in which case by definition of m, m0 6= 0. Or m = 1 in which
case m0 = 0. Either way, m 6= m0, which contradicts the fact that
r = r0. Thus n 6= 1.

Now suppose that n > 0. What is the nth digit an of rn? If the nth
digit is 1 then the nth digit of rn is not equal to one. If the nth digit is
2 then the nth digit of rn is equal to one. Either way, an 6= ann. This
contradicts the fact that r = rn.

Thus r does not belong to the list of real numbers. This contradicts
the fact that f is surjective. Therefore the reals are uncountable. �

Corollary 18.7. There are irrational numbers, that is, there are real
numbers that are not rational.

Proof. Consider the inclusion

i : Q −→ R
The rationals are countable and so i is not bijective. As i is injective
it is not surjective. Thus there are reals which are not rational. �
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