18. COUNTABLE AND UNCOUNTABLE

The first really interesting result about two sets having the same
cardinality is the following:

Proposition 18.1. N and N x N have the same cardinality.

Proof. We have to define a bijection
f:N— NxN.
The easiest way to prove this is by a picture. O

Since proofs by pictures are not really supposed to be allowed, we
need another way to prove ((18.1). The following is very useful:

Theorem 18.2 (Schroder-Bernstein). If A and B are two sets and
f:A— B and g: B— A are two injective functions then A and B
have the same cardinality.

Proof of (18.1). Aliter We just find injective functions both ways.
The function

f:N— NxN  given by f(n) = (n,0),
is clearly injective. Consider the function
g:NxN-—N given by g(a,b) = 23",

Suppose that g(a,b) = g(c,d). Then 243° = 2¢3?. Comparing powers
of two and powers of three, we must have a = ¢ and b = d (see (18.3])).
Thus ¢ is injective, since factorisation of natural numbers into primes

is injective. Now apply ((18.2)). O

Theorem 18.3 (Fundamental Theorem of Arithmetic). Every integer
n € Z has a factorisation into a product of £1 and primes,

n = j:plflp§2 . .pfl".
This factorisation is unique, if we order the primes in ascending order.
Theorem 18.4. The set of rational numbers Q is countable.

Proof. The natural inclusion
i:Z—Q  givenby  i(n)=n,

is an injective map.
Define a map
[ Q—ZxZ,
by sending the rational number ¢ to the pair (a,b), where b > 0 and

¢ = a/b and a and b are coprime, that is, they have no common prime
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factors. Suppose that f(q1) = f(q2). If f(@) = (a;,b;), i = 1, 2, then
(ay,b1) = (az, bg) so that
ai
by

by

= Q2.
Thus f is injective. We have already seen that Z x Z is countable and so
there is an injective map Z x Z — Z. The composition go f: Q — Z
is an injective map, as the composition of injective maps is injective.

Now apply (18.2) to conclude that Q is countable. O

q1 =

Theorem 18.5 (Cantor’s diagonalisation argument). The real num-
bers are uncountable.

Uncountable means not countable.
We will need a basic result about how to represent real numbers,
which we will accept without proof:

Lemma 18.6. Fvery real number r has a decimal expansion, so that
we can write

T:n+0.d1d2...,
where n € Z is an integer and the digits dy,ds, ... are integers between
zero and 9. Moreover, given any k, we may find a digit d; # 9, | > k.

The last statement just means we can always replace repeating 9’s.
0.99999 .- =1,

and so on.

Proof of ({18.5)). Suppose not, suppose that the real numbers are count-
able. Then there would be a surjective function f: N — R. Then we
get a list of all real numbers, ro,r1,rs,..., where r; = f(i). Imagine
making an actual list of these numbers

To = Mo + O.a01a02a03 ce

T =mq + 0.(111@12&13 R

To = Mo + O.a21a22a23 ce

Tn =My + 0.0,10,20,3 . . ..
We construct another real number r,

r=m+ 0.a1asas. ..,
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as follows.

If the integer part mg of ry is not zero, then we let the integer part m
of r be zero. If the integer part mg of 1 is zero then we let the integer
part m of r be one. Thus r € [0,2]. The digits aj, as,... of r take on
two posible values one or two. To decide the value of each digit a; we
consider the corresponding real number r; in our list.

If the first digit a;; of r1 is not one then we let the first digit a; of
be one. If the first digit a;; of 1 is one then we let the first digit a; of
r1 be two.

If the second digit aqo of 75 is not one then we let the second digit as
of r be one. If the first digit ass of 9 is one then we let the first digit
as of rs be two.

In general, we define the nth digit a,, of r as follows:

1 ifay, #1
Qp = .
2 ifa,, =1.

As f is surjective there is a natural number n such that f(n) = r,
that is, » = r,. Suppose that n = 0. There are two cases. Either
m = 0 in which case by definition of m, mg # 0. Or m = 1 in which
case mo = 0. Either way, m # myg, which contradicts the fact that
r =ry. Thus n # 1.

Now suppose that n > 0. What is the nth digit a, of r,? If the nth
digit is 1 then the nth digit of r,, is not equal to one. If the nth digit is
2 then the nth digit of r, is equal to one. Either way, a, # a,,. This
contradicts the fact that r = r,,.

Thus r does not belong to the list of real numbers. This contradicts
the fact that f is surjective. Therefore the reals are uncountable. [

Corollary 18.7. There are irrational numbers, that is, there are real
numbers that are not rational.

Proof. Consider the inclusion

1:Q—R
The rationals are countable and so ¢ is not bijective. As i is injective
it is not surjective. Thus there are reals which are not rational. U
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