13. Functions

Definition 13.1. Let A and B be two sets. The Cartesian product of A and B, denoted $A \times B$, is the set of all ordered pairs

$$
A \times B=\{(a, b) \mid a \in A, b \in B\}
$$

Remark 13.2. Again for the sake of completeness, observe that the formal way to define an ordered pair using the language of sets is

$$
(a, b)=\{\{a\},\{a, b\}\} .
$$

We have already seen unordered pairs in the context of edges of a graph:

$$
a b=\{a, b\} .
$$

Example 13.3. Let

$$
A=\{a, b, c\} \quad \text { and } \quad B=\{c, d\}
$$

Then

$$
A \times B=\{(a, c),(a, d),(b, c),(b, d),(c, c),(c, d)\}
$$

Note that if A and B are finite sets then

$$
|A \times B|=|A| \cdot|B| .
$$

We now introduce probably the most important concept in mathematics.

Definition 13.4. A function between two sets A and B, denoted $f: A \longrightarrow B$, is a subset $\Gamma_{f} \subset A \times B$ such that for every element a of A, there is a unique element $b \in B$ such that $(a, b) \in \Gamma_{f}$,

$$
\forall a \in A, \exists!b \in B,(a, b) \in \Gamma_{f}
$$

A is called the domain and B is called the range.
$\exists!b \in B$ means that there is a unique element with the given property.
In practice, we will use the notation $f(a)=b$, so that $(a, f(a)) \in \Gamma_{f}$. The notion of a function is almost as basic as that of a set.

We start with a degenerate example. Suppose that $A=\emptyset$. If B is any set then there is one function f from A to B,

$$
\Gamma_{f}=\emptyset \subset \emptyset \times B .
$$

We are supposed to quantify over A. As A is empty there is nothing to check.

Now suppose that $B=\emptyset$ and A is any set. Is there a function from f from A to B ? No, unless $A=\emptyset$. If A is not empty then we have to find an element of the emptyset with a certain property, which is not possible.

If B has one element, $B=\{b\}$, there is always exactly one function from A to B. We just send every element of A to B.

Definition 13.5. Let A be any set and let B be a set and let b be an element of $B, b \in B$. Define a function by $f: A \longrightarrow B$ by

$$
\Gamma_{f}=\{(a, b) \mid a \in A\}=A \times\{b\} \subset A \times B
$$

Using the more standard notation, we have

$$
f(a)=b \quad \text { for all } \quad a \in A
$$

For obvious reasons we call any such function a constant function.
Definition 13.6. If A is any set, the identity function from A to A, denoted $i d_{A}: A \longrightarrow A$, is the function

$$
\{(a, a) \mid a \in A\} \subset A \times A
$$

Using the more standard notation, we have

$$
\operatorname{id}_{A}(a)=a
$$

More generally, we have
Definition 13.7. Let A be a subset of $B, A \subset B$. The inclusion of A into B, denoted $i_{A}: A \longrightarrow B$ is the function

$$
\{(a, a) \mid a \in A\} \subset A \times B
$$

Using the more standard notation, we have

$$
i_{A}(a)=a
$$

Note that the identity function is a special case of an inclusion, where $B=A$.
Example 13.8. Let

$$
A=\{a, b, c\} \quad \text { and } \quad B=\{c, d\}
$$

Then

$$
\Gamma=\{(a, c),(b, d),(c, c)\}
$$

is a function $f: A \longrightarrow B$. Using more standard notation, we have

$$
f(a)=c, \quad f(b)=d \quad \text { and } \quad f(c)=c .
$$

Let X be a finite set. There is a function from the powerset of X to the natural numbers:

$$
f: \wp(X) \longrightarrow \mathbb{N} \quad \text { given by } \quad f(A)=|A|
$$

An element of the powerset, is a subset of X. As X is finite, this subset has finite cardinality and f just assigns to A its cardinality.

If

$$
X=\{a, b, c, d\}
$$

then

$$
f(\{a\})=1 \quad \text { and } \quad f(\{b, d\})=2 .
$$

Suppose that $G=(V, E)$. We have already implicitly defined a function

$$
d: V \longrightarrow \mathbb{N} \quad \text { given by } \quad d(v)=\text { the degree of } v .
$$

If X is a set and A is a subset, we can define a function

$$
\chi_{A}: X \longrightarrow\{0,1\} \quad \text { given by } \quad \chi_{A}(x)= \begin{cases}1 & \text { if } x \in A \\ 0 & \text { if } x \notin A\end{cases}
$$

If

$$
X=\{a, b, c, d\} \quad \text { and } \quad A=\{a\}
$$

then

$$
\chi_{A}(a)=1 \quad \text { but } \quad \chi_{A}(c)=0 .
$$

χ_{A} is called the characteristic function of A.
Definition 13.9. A sequence is a function $f: \mathbb{N} \longrightarrow A$.
Of course one way to denote a sequence is to write it out:

$$
a_{0}, a_{1}, a_{2}, \ldots
$$

The Fibonacci numbers are a sequence of natural numbers.

