13. Functions

Definition 13.1. Let A and B be two sets. The **Cartesian product** of A and B, denoted $A \times B$, is the set of all ordered pairs

$$A \times B = \{ (a, b) | a \in A, b \in B \}.$$

Remark 13.2. Again for the sake of completeness, observe that the formal way to define an ordered pair using the language of sets is

$$(a,b) = \{ \{ a \}, \{ a,b \} \}.$$

We have already seen unordered pairs in the context of edges of a graph:

$$ab = \{a, b\}.$$

Example 13.3. Let

$$A = \{a, b, c\} \qquad and \qquad B = \{c, d\}$$

Then

$$A \times B = \{ (a, c), (a, d), (b, c), (b, d), (c, c), (c, d) \}.$$

Note that if A and B are finite sets then

$$|A \times B| = |A| \cdot |B|.$$

We now introduce probably the most important concept in mathematics.

Definition 13.4. A function between two sets A and B, denoted $f: A \longrightarrow B$, is a subset $\Gamma_f \subset A \times B$ such that for every element a of A, there is a unique element $b \in B$ such that $(a, b) \in \Gamma_f$,

$$\forall a \in A, \exists! b \in B, (a, b) \in \Gamma_f.$$

A is called the **domain** and B is called the **range**.

 $\exists!b \in B$ means that there is a unique element with the given property. In practice, we will use the notation f(a) = b, so that $(a, f(a)) \in \Gamma_f$. The notion of a function is almost as basic as that of a set.

We start with a degenerate example. Suppose that $A = \emptyset$. If B is any set then there is one function f from A to B,

$$\Gamma_f = \emptyset \subset \emptyset \times B.$$

We are supposed to quantify over A. As A is empty there is nothing to check.

Now suppose that $B = \emptyset$ and A is any set. Is there a function from f from A to B? No, unless $A = \emptyset$. If A is not empty then we have to find an element of the emptyset with a certain property, which is not possible.

If B has one element, $B = \{b\}$, there is always exactly one function from A to B. We just send every element of A to B.

Definition 13.5. Let A be any set and let B be a set and let b be an element of B, $b \in B$. Define a function by $f: A \longrightarrow B$ by

$$\Gamma_f = \{ (a, b) \mid a \in A \} = A \times \{ b \} \subset A \times B.$$

Using the more standard notation, we have

$$f(a) = b$$
 for all $a \in A$.

For obvious reasons we call any such function a constant function.

Definition 13.6. If A is any set, the **identity function** from A to A, denoted $id_A: A \longrightarrow A$, is the function

$$\{(a,a) \mid a \in A\} \subset A \times A.$$

Using the more standard notation, we have

$$id_A(a) = a.$$

More generally, we have

Definition 13.7. Let A be a subset of B, $A \subset B$. The **inclusion** of A into B, denoted $i_A : A \longrightarrow B$ is the function

$$\{(a,a) \mid a \in A\} \subset A \times B.$$

Using the more standard notation, we have

$$i_A(a) = a$$
.

Note that the identity function is a special case of an inclusion, where B=A.

Example 13.8. Let

$$A = \{a, b, c\} \qquad and \qquad B = \{c, d\}$$

Then

$$\Gamma = \{\,(a,c),(b,d),(c,c)\,\},$$

is a function $f: A \longrightarrow B$. Using more standard notation, we have

$$f(a) = c,$$
 $f(b) = d$ and $f(c) = c.$

Let X be a finite set. There is a function from the power set of X to the natural numbers:

$$f : \mathcal{O}(X) \longrightarrow \mathbb{N}$$
 given by $f(A) = |A|$.

An element of the powerset, is a subset of X. As X is finite, this subset has finite cardinality and f just assigns to A its cardinality.

If

$$X = \{a, b, c, d\}$$

then

$$f(\{a\}) = 1$$
 and $f(\{b,d\}) = 2$.

Suppose that G=(V,E). We have already implicitly defined a function

$$d: V \longrightarrow \mathbb{N}$$
 given by $d(v) = \text{the degree of } v.$

If X is a set and A is a subset, we can define a function

$$\chi_A \colon X \longrightarrow \{0,1\}$$
 given by $\chi_A(x) = \begin{cases} 1 & \text{if } x \in A \\ 0 & \text{if } x \notin A. \end{cases}$

If

$$X = \{a, b, c, d\} \qquad \text{and} \qquad A = \{a\}$$

then

$$\chi_A(a) = 1$$
 but $\chi_A(c) = 0$.

 χ_A is called the **characteristic function** of A.

Definition 13.9. A sequence is a function $f: \mathbb{N} \longrightarrow A$.

Of course one way to denote a sequence is to write it out:

$$a_0, a_1, a_2, \dots$$

The Fibonacci numbers are a sequence of natural numbers.