9. POLYNOMIAL RINGS

Let us now turn out attention to determining the prime elements
of a polynomial ring, where the coefficient ring is a field. We already
know that such a polynomial ring is a UFD. Therefore to determine
the prime elements, it suffices to determine the irreducible elements.

We start with some basic facts about polynomial rings.

Lemma 9.1. Let R be an integral domain.
Then the units in R|x] are precisely the units in R.

Proof. One direction is clear. A unit in R is a unit in R[x].

Now suppose that f(z) is a unit in R[z]. Given a polynomial g,
denote by d(g) the degree of g(z) (note that we are not claiming that
RJz] is a Euclidean domain). Now f(x)g(x) = 1. Thus

0= d(1)
=d(fg)
> d(f)+d(g).

Thus both of f and g must have degree zero. It follows that f(z) = fo
and that fy is a unit in R[z]. O

Lemma 9.2. Let R be a ring. The natural inclusion
R — RJz]

which just sends an element r € R to the constant polynomial r, is a
ring homomorphism.

Proof. Easy. O
The following universal property of polynomial rings, is very useful.

Lemma 9.3. Let
¢p: R— S

be any ring homomorphism and let a € S be any element of S.
Then there is a unique ring homomorphism

v Rlxz] — S,
such that ¢(x) = a and which makes the following diagram commute
R—"+5

f .:l.b_,-"”



Proof. Note that any ring homomorphism
V: Rlz] — S
that sends x to a and acts as ¢ on the coefficients, must send
Ant"™ + a1 2" 4+ ag

to

dlan)a™ + ¢(an_1)a" ™ + -+ ¢(ao).
Thus it suffices to check that the given map is a ring homomorphism,
which is left as an exercise to the reader. O

Definition 9.4. Let R be a ring and let o be an element of R. The
natural ring homomorphism

¢: R[z] — R,

which acts as the identity on R and which sends x to «, is called eval-
uation at o and is often denoted ev,,.
We say that o is a zero of f(x), if f(x) is in the kernel of ev,,.

Lemma 9.5. Let K be a field and let o be an element of K.
Then the kernel of ev, is the ideal (x — «).

Proof. Denote by I the kernel of ev,,

Clearly x —a isin I. On the other hand, K|z] is a Euclidean domain,
and so it is certainly a PID. Thus [ is principal. Suppose it is generated
by f, so that I = (f). Then f divides x — . If f has degree one, then
x —a must be an associate of f and the result follows. If f has degree
zero, then it must be a constant. As f has a root at «, in fact this
constant must be zero, a contradiction. 0

Lemma 9.6. Let K be a field and let f(x) be a polynomial in K|[x].
Then we can write f(x) = g(z)h(x) where g(x) is a polynomial of
degree one if and only if f(z) has a root in K.

Proof. First note that a polynomial of degree one always has a root in
K. Indeed any polynomial of degree one is of the form ax + b, where
a # 0. Then it is easy to see that a = —g is a root of ax + b.

On the other hand, the kernel of the evaluation map is an ideal, so
that if g(z) has a root «, then in fact so does f(z) = g(x)h(x). Thus
if we can write f(x) = g(z)h(x), where g(x) has degree one, then it
follows that f(x) must have a root.

Now suppose that f(x) has a root at . Consider polynomial g(x) =
x — . Then the kernel of ev,, is equal to (z —a). As f is in the kernel,
f(z) = g(x)h(z), for some h(zx) € R[z]. O

2



Lemma 9.7. Let K be a field and let f(x) be a polynomial of degree
two or three.
Then f(x) is irreducible if and only if it has no roots in K.

Proof. 1f f(x) has a root in K, then f(z) = g(x)h(x), where g(x) has
degree one, by . As the degree of f is at least two, it follows that
h(z) has degree at least one. Thus f(z) is not irreducible.

Now suppose that f(z) is not irreducible. Then f(z) = g(z)h(x),
where neither g nor h is a unit. Thus both ¢ and h have degree at
least one. As the sum of the degrees of g and h is at most three, the
degree of f, it follows that one of g and h has degree one. Now apply

(9.6). O

Definition 9.8. Let p be a prime.
F, denotes the unique field with p elements.

Of course, F, is isomorphic to Z,. However, as we will see later, it
is useful to replace Z by F'.

Example 9.9. First consider the polynomial x> 4+ 1. Quer the real
numbers this is irreducible. Indeed, if we replace x by any real number
a, then a® is positive and so a® + 1 cannot equal zero.

On the other hand i is a root of x> +1, asi>+1 = 0. Thus 2*>+1 is
reducible over the complex numbers. Indeed 2*+1 = (z+1i)(x—1). Thus
an irreducible polynomial might well become reducible over a larger field.

Example 9.10. Consider the polynomial x® +x +1. We consider this
over various fields. As observed in this is reducible if and only if
it has a root in the given field.

Suppose we work over the field Fs. We need to check if the five
elements of F5 are roots or not. We have

12+14+41=3 224+2+1=2 32+3+1=3 4°+4+1=1

Thus this is irreducible over Fs. Now consider what happens over the
field with three elements F5. Then 1 is a root of this polynomial. As
neither 0 nor 2 are roots, we must have

Prr+l=(r—-1)>%=(x+2)?
which is easy to check.

Example 9.11. Now let us determine all irreducible polynomials of
degree at most four over Fy. Any linear polynomial is irreducible. There
are two such x and x + 1. A general quadratic has the form f(z) =
22 +ar+b. b#0, else x divides f(x). Thusb = 1. If a = 0, then
f(x) = 2* + 1, which has 1 as a zero. Thus f(z) = 2>+ x + 1 is the

only irreducible quadratic.
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Now suppose that we have an irreducible cubic f(z) = x> +ax+br+1.
This is irreducible if and only if f(1) # 0, which is the same as to say
that there are an odd number of terms. Thus the irreducible cubics are
fl)=a+2>+1 and 2® +z + 1.

Finally suppose that f(x) is a quartic polynomial. The general irre-
ducible is of the form x* + ax® + bx* 4+ cx + 1. f(1) # 0 is the same
as to say that either two of a, b and ¢ are equal to zero or they are all
equal to one. Suppose that

f(@) = g(x)h(z).
If f(x) does not have a root, then both g and h must have degree two.
If either g or h were reducible, then again f would have a linear factor,
and therefore a root. Thus the only possibilty is that both g and h are
the unique wrreducible quadratic polynomaials.
In this case

fr)y=(@*+z+1)?2 =2 +2* + 1

Thus 2+ 2 + 22+ 2+ 1, 2* + 23+ 1, and 2* + 2 + 1 are the three
wrreducible quartics.
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