2. BAasic PROPERTIES OF RINGS

We first prove some standard results about rings.
Lemma 2.1. Let R be a ring and let a and b be elements of R.
Then
(1) a0 = 0a = 0.
(2) a(—b) = (—a)b = —(ab).
Proof. Let x = a0. We have

r =al
=a(0+0)
= a0+ a0
=zr+=x.
Adding —z to both sides, we get = 0, which is (1).
Let y = a(—b). We want to show that y is the additive inverse of ab,
that is, we want to show that y + ab = 0. We have
y + ab = a(—b) + ab
=a(—b+10)
=al

by (1). Hence (2). O

Lemma 2.2. Let R be a set that satisfies all the azioms of a ring,
except possibly a +b =0+ a.
Then R is a ring.

Proof. 1t suffices to prove that addition is commutative. We compute
(a+b)(14 1), in two different ways. Distributing on the right,

(a+b)(14+1)=(a+b1+ (a+0b)1
=a+b+a-+b
=a+(b+a)+0.

On the other hand, distributing this product on the left we get

(a+b)(1+1)=a(l+1)+b(1+1)
=a+a+b+0.

Thus

a+(b+a)t+a=(a+b)(1+1)=a+a+b+b.
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Cancelling an a on the left and a b on the right, we get
b+a=a+b,
which is what we want. [

Note the following identity.

Lemma 2.3. Let R be a ring and let a and b be any two elements of
R.
Then
(a+0b)*> =a®+ ab+ ba + b*.

Proof. Easy application of the distributive laws. O

Definition 2.4. Let R be a ring. We say that R is commutative if
multiplication s commutative, that is

a-b=>b-a.
Note that most of the rings introduced in the the first section are not
commutative. Nevertheless it turns out that there are many interest-

ing commutative rings. Compare this with the study of groups, when
abelian groups are not considered very interesting.

Definition-Lemma 2.5. Let R be a ring. We say that R is boolean
if for every a € R, a* = a.
FEvery boolean ring is commutative.
Proof. We compute (a + b)?.
a+b=(a+0b)?
=a’+ba+ab+b?
=a+ba+ ab+0b.
Cancelling we get ab = —ba. If we take b = 1, then a = —a, so that
—(ba) = (=b)a = ba. Thus ab = ba. O

Definition 2.6. Let R be a ring. We say that R is a division ring
if R—{0} is a group under multiplication. If in addition R is commu-
tative, we say that R is a field.

Note that a ring is a division ring if and only if every non-zero element
has a multiplicative inverse. Similarly for commutative rings and fields.

Example 2.7. The following tower of subsets
QcRcC

15 in fact a tower of subfields. Note that Z is not a field however, as 2

does not have a multiplicative inverse. Further the subring of Q given
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by those rational numbers with odd demominator is not a field either.
Again 2 does not have a multiplicative inverse.

Lemma 2.8. The quaternions are a division ring.

Proof. Tt suffices to prove that every non-zero number has a multiplica-
tive inverse.
Let ¢ = a + bi + ¢j + dk be a quaternion. Let

qg=a—bi—cj—dk,
the conjugate of q. Note that
@G =a’+ b+ +d%

As a, b, ¢ and d are real numbers, this product if non-zero if and only
if ¢ is non-zero. Thus

q
a? + b2+ 2+ d*’
is the multiplicative inverse of q. O

p:

It is interesting to see if there are any obvious reasons why a ring
might not be a division ring. Here is one.

Definition-Lemma 2.9. Let R be a ring. We say that a € R, a # 0,
is a zero-divisor if there is an element b € R, b # 0, such that, either,

ab=0 or ba = 0.

Suppose that a is a zero-divisor of R. Then a does not have an
inverse in R.

Proof. Suppose that ba = 0 and that ¢ is the multiplicative inverse of
a. We compute bac, in two different ways.

bac = (ba)c
= 0c
On the other hand
bac = b(ac)
=0l
=b.

Thus b = bac = 0. Thus a cannot both be a zero-divisor and have a
multiplicative inverse. U



Definition-Lemma 2.10. Let R be a ring. We say that R is a do-
main if R has no zero-divisors. If in addition R is commutative, then
we say that R is an tntegral domain.

Every division ring is a domain.

Unfortunately the converse is not true.
Example 2.11. Z s an integral domain but not a field.

In fact any subring of a division ring is clearly a domain. Many of
the examples of rings that we have given are in fact not domains.

Example 2.12. Let X be a set with more than two elements and let R
be any ring. Then the set of functions from X to R is not a domain.
Indeed pick any partition of X into two parts, X, and Xy (that is
suppose that X; and Xy are disjoint, both non-empty and that their
union is the whole of X ). Define f: X — R, by

0 z€X
fla) = '
1 .CEEXQ,

and g: X — R, by

0 $€X2.

Then fg =0, but neither f not g is zero. Thus f is a zero-divisor.

g(x):{l r e X

Example 2.13. Now let R be any ring, and suppose that n > 1. [
claim that M, (R) is not a domain. We will do this in the case n = 2.
The general case is not much harder, just more involved notationally.

Set
01
== (0).

Then it is easy to see that

0 0
= (0 0)
Note that the definition of an integral domain involves a double neg-
ative. In other words, R is an integral domain if and only if whenever
ab =0,

where a and b are elements of R, then either a = 0 or b = 0.



	2. Basic Properties of Rings

