15. FINITELY GENERATED MODULES OVER A PID

We want to give a complete classification of finitely generated mod-
ules over a PID. Recall that a finitely generated module is a quotient
of R", a free module. Let K be the kernel. Then M is isomorphic to
R™/K, by the Isomorphism Theorem.

Now K is a submodule of a Noetherian module; hence K is finitely
generated. Pick a finite set of generators of K (it turns out that K
is also isomorphic to a free module. Thus K is isomorphic to R™, for
some m, and in fact m < n).

As there is a map R™ — K, by composition we get an R-linear
map

¢: R — R".
Since K is determined by ¢, M is determined by ¢. The crucial piece
of information is to determine ¢.

As this map is R-linear, just as in the case of vector spaces, ev-
erything is determined by the action of ¢ on the standard generators
f1, fay .., fm. Suppose that we expand ¢(f;) as a linear combination
of the standard generators ey, es, ..., e, of R™.

S(f:) =D aie;.
J
In this case we get a matrix
A= ((lij) € Mn’m(R)

The point is to choose different bases of R™ and R"™ so that the
representation of ¢ by A is in a better form. Note the following

Lemma 15.1. Let 1,79, ...,1, be (respectively free) generators of M.
Then so are s1, Sa, ..., S,, where

(1) we multiply one of the r; by a unit,

(2) we switch the position of r; and r;,

(3) we replace r; by r; + ar;, where a is any scalar.

Proof. Easy. O

At the level of matrices, informs us that we are free to perform
any one of the elementary operations on matrices, namely multiplying
a row (respectively column) by a unit, switching two rows (respectively
columns) and taking a row and adding an arbitrary multiple of another
row (respectively column).

Proposition 15.2. Let A be a matriz with entries in a PID R.
Then, after a sequence of elementary row operations and column

operations, we may put A into the following form. The only non-zero
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entries are on the diagonal and each non-zero entry divides the next
one in the list.

Proof. This is much easier than it looks. Suppose that the ged of the
entries of A is d. As R is a PID, d is a linear combination of the entries
of A. Thus by repeated row and column operations, and multiplication
by units, we may assume that d is equal to one of the entries of A. Now
by permuting the rows and columns, we may assume that d is at the
top left hand corner. As d is the ged, it divides every entry of A. By
row and column reduction we reduce to the case that the only non-zero
entry in the first column and row is the entry d at the top left hand
corner. Let B be the matrix obtained by striking out the first row and
column. Then every element of B is divisible by d and we are done by
induction on m and n. 0

Corollary 15.3. Let M be a module over a PID R.
Then M is isomorphic to F'® T, where F is a free module and T is
1somorphic to, either
(1)
R/{di) & R/(d2) & ... R/(dy).
where d; divides d;y1, or
R/(pi") & R/(p5*) & ... R/{pp").

where p; 1S a prime.

Proof. By the Chinese Remainder Theorem it suffices to prove the first
classification result. By assumption M is isomorphic to a quotient of
R™ by an image of R™. By we may assume the corresponding
matrix has the given simple form. Now note that the rows that con-
tain only zeroes, correspond to the free part, and there is an obvious
corrrespondence between the non-zero rows and the direct summands
of the torsion part. O

Really the best way to illustrate the proof of these results, which are
not hard, is to illustrate the methods by an example. Suppose we are
given
3 8
2 4
2

N O

9
6
1 1
The ged is 1. Thus we first switch the third and first rows.
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As we now have a 1 in the first row, we can now eliminate 2 and 3
from the first column, a la Gaussian elimination, to get

1 2 21
00 2 4
0216

Now eliminate the entries in the first row.

1000
00 2 4
0216

Now we switch the second and third columns,

1000
020 4
01 26

and then the second and third rows,
10

0

0

O

0
1 2
20

W

Now eliminate as before,

10 0 0

01 0 O

00 —4 -8

Now multiply the third row by —1 and eliminate the 8, to get

1000
0100
0040

It follows then that we have (Z@Z ®Z)/(Z ® 7L ® AZ) ~ Zy4.

Theorem 15.4. (Jordan Normal Form) Let ¢: V. — V be a linear
map between finite dimensional vector spaces, over a field F, which is
algebraically closed (every polynomial has a root).

Then there is a basis e, ea,...,¢e, of V' such that the associated ma-
triz has the following decomposition into blocks, By, Bs, ..., By. FEach
block has a single number along the main diagonal, and a string of 1’s
above the main diagonal.

Proof. The idea is to make V' into an F'[z]-module and apply the clas-

sification Theorem.
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Now the point is that it makes sense to talk about polynomials in ¢.
Thus to define a scalar multiplication

Flz] xV —V

just send (f(z),v) to f(¢)v, the result of applying the linear transfor-
mation f(¢) applied to v. In this way V' becomes an F'|z]-module. As
F is field, F'[z] is a PID. By the classification Theorem, V' is isomorphic

to
klz]/(p" (2)) ® kl]/{py"* () & ... k[z]/(p;" (x)).

where each p;(z) is a prime (equivalently irreducible) polynomial. The
possibility that f(x) = 0 is excluded as V' is finite dimensional. Now
each direct summand corresponds to a block of our matrix. So we
might as well assume that there is only one summand (and then only
one block).

Since K is algebraically closed, the only irreducible polynomials are
in fact linear polynomials. Thus

p(x) = (z=A)
for some A\ € F. It follows then that (¢ — AI)” = 0. On the other
hand, the given matrix has exactly this F[z]-module structure and the
F[z]-module structure determines ¢. It follows easily that ¢ has the
given form on the given block. 0
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