
15. Finitely Generated Modules over a PID

We want to give a complete classification of finitely generated mod-
ules over a PID. Recall that a finitely generated module is a quotient
of Rn, a free module. Let K be the kernel. Then M is isomorphic to
Rn/K, by the Isomorphism Theorem.

Now K is a submodule of a Noetherian module; hence K is finitely
generated. Pick a finite set of generators of K (it turns out that K
is also isomorphic to a free module. Thus K is isomorphic to Rm, for
some m, and in fact m ≤ n).

As there is a map Rm −→ K, by composition we get an R-linear
map

φ : Rm −→ Rn.

Since K is determined by φ, M is determined by φ. The crucial piece
of information is to determine φ.

As this map is R-linear, just as in the case of vector spaces, ev-
erything is determined by the action of φ on the standard generators
f1, f2, . . . , fm. Suppose that we expand φ(fi) as a linear combination
of the standard generators e1, e2, . . . , en of Rn.

φ(fi) =
∑
j

aijej.

In this case we get a matrix

A = (aij) ∈Mn,m(R).

The point is to choose different bases of Rm and Rn so that the
representation of φ by A is in a better form. Note the following

Lemma 15.1. Let r1, r2, . . . , rn be (respectively free) generators of M .
Then so are s1, s2, . . . , sn, where

(1) we multiply one of the ri by a unit,
(2) we switch the position of ri and rj,
(3) we replace ri by ri + arj, where a is any scalar.

Proof. Easy. �

At the level of matrices, (15.1) informs us that we are free to perform
any one of the elementary operations on matrices, namely multiplying
a row (respectively column) by a unit, switching two rows (respectively
columns) and taking a row and adding an arbitrary multiple of another
row (respectively column).

Proposition 15.2. Let A be a matrix with entries in a PID R.
Then, after a sequence of elementary row operations and column

operations, we may put A into the following form. The only non-zero
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entries are on the diagonal and each non-zero entry divides the next
one in the list.

Proof. This is much easier than it looks. Suppose that the gcd of the
entries of A is d. As R is a PID, d is a linear combination of the entries
of A. Thus by repeated row and column operations, and multiplication
by units, we may assume that d is equal to one of the entries of A. Now
by permuting the rows and columns, we may assume that d is at the
top left hand corner. As d is the gcd, it divides every entry of A. By
row and column reduction we reduce to the case that the only non-zero
entry in the first column and row is the entry d at the top left hand
corner. Let B be the matrix obtained by striking out the first row and
column. Then every element of B is divisible by d and we are done by
induction on m and n. �

Corollary 15.3. Let M be a module over a PID R.
Then M is isomorphic to F ⊕ T , where F is a free module and T is

isomorphic to, either

(1)
R/〈d1〉 ⊕R/〈d2〉 ⊕ . . . R/〈dn〉.

where di divides di+1, or
(2)

R/〈pm1
1 〉 ⊕R/〈pm2

2 〉 ⊕ . . . R/〈pmn
n 〉.

where pi is a prime.

Proof. By the Chinese Remainder Theorem it suffices to prove the first
classification result. By assumption M is isomorphic to a quotient of
Rn by an image of Rm. By (15.2) we may assume the corresponding
matrix has the given simple form. Now note that the rows that con-
tain only zeroes, correspond to the free part, and there is an obvious
corrrespondence between the non-zero rows and the direct summands
of the torsion part. �

Really the best way to illustrate the proof of these results, which are
not hard, is to illustrate the methods by an example. Suppose we are
given 3 8 7 9

2 4 6 6
1 2 2 1


The gcd is 1. Thus we first switch the third and first rows.1 2 2 1

2 4 6 6
3 8 7 9

 .
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As we now have a 1 in the first row, we can now eliminate 2 and 3
from the first column, a la Gaussian elimination, to get1 2 2 1

0 0 2 4
0 2 1 6

 .

Now eliminate the entries in the first row.1 0 0 0
0 0 2 4
0 2 1 6


Now we switch the second and third columns,1 0 0 0

0 2 0 4
0 1 2 6


and then the second and third rows,1 0 0 0

0 1 2 6
0 2 0 4


Now eliminate as before, 1 0 0 0

0 1 0 0
0 0 −4 −8


Now multiply the third row by −1 and eliminate the 8, to get1 0 0 0

0 1 0 0
0 0 4 0


It follows then that we have (Z⊕ Z⊕ Z)/(Z⊕ Z⊕ 4Z) ' Z4.

Theorem 15.4. (Jordan Normal Form) Let φ : V −→ V be a linear
map between finite dimensional vector spaces, over a field F , which is
algebraically closed (every polynomial has a root).

Then there is a basis e1, e2, . . . , en of V such that the associated ma-
trix has the following decomposition into blocks, B1, B2, . . . , Bk. Each
block has a single number along the main diagonal, and a string of 1’s
above the main diagonal.

Proof. The idea is to make V into an F [x]-module and apply the clas-
sification Theorem.
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Now the point is that it makes sense to talk about polynomials in φ.
Thus to define a scalar multiplication

F [x]× V −→ V

just send (f(x), v) to f(φ)v, the result of applying the linear transfor-
mation f(φ) applied to v. In this way V becomes an F [x]-module. As
F is field, F [x] is a PID. By the classification Theorem, V is isomorphic
to

k[x]/〈pm1
1 (x)〉 ⊕ k[x]/〈pm2

2 (x)〉 ⊕ . . . k[x]/〈pmk
k (x)〉.

where each pi(x) is a prime (equivalently irreducible) polynomial. The
possibility that f(x) = 0 is excluded as V is finite dimensional. Now
each direct summand corresponds to a block of our matrix. So we
might as well assume that there is only one summand (and then only
one block).

Since K is algebraically closed, the only irreducible polynomials are
in fact linear polynomials. Thus

p(x) = (x− λ)

for some λ ∈ F . It follows then that (φ − λI)m = 0. On the other
hand, the given matrix has exactly this F [x]-module structure and the
F [x]-module structure determines φ. It follows easily that φ has the
given form on the given block. �
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