13. TENSOR PRODUCT

We want to introduce a new, and somewhat subtle, operation on
modules, somewhat akin to the direct sum. For operations such as
the direct sum, quotient and so on, whilst by far the best method for
understanding these operations is to use the accompanying universal
property, it is true that one can get away with understanding these
operations independently of understanding the universal property. On
the other hand, it is almost inconceivable that one could really under-
stand the tensor product without coming to terms with its universal

property.
Definition 13.1. Let M, N and P be three R-modules. We say that

a map
fiMxN—P

is bilinear if it is linear in each factor. That is, we have

fmi+mg,n) = f(mi,n) + f(ma,n)  f(rm,n) =rf(m,n)

flm,ny +ny) = f(m,m) + f(m,nz)  f(m,rn) =r(f(m,n).
Definition 13.2. Let M and N be two R-modules. The tensor prod-
uct of M and N, denoted

M &N
R
15 an R-module, together with a bilinear map
u: M xN— MxN
R

which has the following universal property. Suppose that P is any R-
module and let
f:MxN-—P

be a bilinear map. Then there is a unique induced module homomor-
phism
¢o: M@N — P
R

such that the following diagram commutes,

Mx N L.

v

M&N
R

In other words, the tensor product is universal amongst all bilinear
maps, in the sense that it replaces a map that is bilinear (namely f), by

a map that is R-linear (namely ¢). Note then, that using the standard
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arguments, the tensor product is unique, up to unique isomorphism.
The first thing to prove is that the tensor product exists. The point to
realise about the construction below, is that even though in principle
one constructs the tensor product explicitly, in fact the construction
offers very little help in computing the tensor product in an explicit
example.

Lemma 13.3. Let M and N be two R-modules.
Then the tensor product of M and N exists.

Proof. Let F' be the free R-module generated by all elements of M x N.
Thus elements of F' are formal linear combinations,

ri(my,ny) + ro(me,ng) + - - - + ri(mg, ng),

where r{,79,...,7x € R, my,mo,...,mi € M and ny,ng,...,ni € N.
We are going to define a submodule G of I, by giving generators of G.
Suppose that m; and mqy are in M and that n € N. Then

(mq1 +ma,n) — (my,n) — (Mg, n)
is one of the generators of G. Similarly if » € R and (m,n) € M x N,
then
r(m,n) — (rm,n).
Similarly, if m € M, n, n;, no € N and r € R then
(m,ny +ng) — (m,ny) — (m, ng) and  r(m,n)— (m,rn),

are also generators of G.
Define T' to be the quotient of F' by G, T = F/G. I claim that T is
the tensor product of M and N. First define a map

u:MxXN—MN
R

in an obvious way. u should be the composition of the natural inclusion
M x N — F and the quotient map F' — T". We need to check that u
is bilinear and universal amongst all such bilinear maps. The important
point is to check that w satisfies the universal property of the tensor
product.

First we check bilinearity of u. We have to check four things. We
check only one, and leave the rest to the reader. Suppose that mq,
mo € M and n € N. As

(my + mg,n) — (my,n) — (mg,n) € G
it follows that

u(my + ma,n) = u(my,n) + u(ms,n).
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Now we check that u satisfies the universal property. So suppose
that we are given a bilinear map

fi:MxN-—P

where P is an R-module. By the universal property of a free module, f
induces an R-module homomorphism ¢: F' — P that extends f. As
f is bilinear, it follows that every generator of GG is in the kernel of ¢,
so that the kernel of ¢ contains G. But then by the universal property
of a quotient, there is a unique R-module homomorphism

v: T — P. 0

It is useful to introduce some notation. We let m®n denote the image
of (m,n) under the universal map. It follows by the construction of
(13.3) that every element of M ® N is a linear combination of these

R

In fact this also follows from the universal property, since the image
of M x N obviously satisfies the same universal property as the tensor
product.

basic elements,

Example 13.4.
ZQ ® Z3 ~ 0
Z

There are several ways to see this. First note that it is not hard to see
that every element of Zo ® Zs is a multiple of
Z

1® 1.
Now
2l®1])=101+1x1
—(1+1)®1
=0®1
= 0.
It follows then that 2(1 ® 1) = 0. On the other hand
3(1®1)=1®3
=1®0
= 0.

Thus 3(1 ® 1) = 0. Subtracting, we get 1 @ 1 = 0. The result follows.
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Another way to see this result, is to show that there are no non-trivial
bilinear maps
f: Lo X Lz — G,
for any abelian group G. Again, it suffices to prove that f(1,1) = 0,
regardless of f and G. Again the thing to focus on is 2(1,1) and 3(1,1).
As f is bilinear

f2(1,1) = f(2,1) = f(0,1) =0 and [(3(1,1)) = f(1,3) = f(1,0) = 0.
Thus f(1,1) =0, by subtracting.
Example 13.5. Now suppose we look at Z4 ® Zg. I claim that this is
Z

1somorphic to
ZLy.
Define a map
u: Ly X Lg — Lo
by sending (a,b) to ab. Note that this map is well-defined, in the sense
that if we picked different representatives for a and b we would still get

the same answer, modulo 2. It is also not hard to see that u is bilinear.
Suppose we are given

fI Ly X g — G
a bilinear map, where G is any abelian group. Define a map
(b: ZQ — G

by sending 1 to f(1,1). We have to prove that ¢ is Z-linear. It suffices
to check that 2(1,1) is sent to zero in G. This is checked just the same
as before. This proves that the tensor product is a subgroup of Zy. On
the other hand, (1,1) is sent to one, so that u is surjective and the
tensor product is Zs.

Example 13.6. [t is also interesting to figure out what happens for
vector spaces. Suppose that' V. and W are two vector spaces over a field
F, of dimensions m andn. Then VW is a vector space of dimension
mn. If m andn are finite and ey, es, ..., e, and fi, fo,. .., fn are bases
for Vand W, then e; ® f;, 1 <i<m and 1 < j <n forms a basis for
V @ W. Note then that the general element of V& W s of the form

Z Ai5€; & fj'
]
In particular, most elements of V@ W are not of the form v ® w.

The tensor product allows for some very nice constructions.
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Definition-Lemma 13.7. Let ¢: R — S be a ring homomorphism
and let M be an R-module. Considering S as a module over itself, we
can consider S as an R-module, via the map ¢. Then the R-module

M ® S is naturally an S-module, by extension of scalars.
R

Proof. As M ® S is an R-module, it is certainly an abelian group. It
R
suffices then to construct a scalar multiplication
Sx(M®S)— M®S.
R R

We proceed by going back to the construction of the tensor product.
Let F' be the free R-module with generators the elements of M x S.
We first make F' into an S-module by defining

s(m,s') — (m, ss').
It is clear that this is well-defined and makes F' into an S-module.
Now we check that this map descends to the quotient. It suffices to
check that G is invariant under scalar multiplication (by a now well-

established principle). It suffices to check that the generators of G are
invariant under scalar multiplication. For example

s((my +ma,n) — (my,n) — (mg,n)) = (my+ma, sn)—(mq, sn)—(ms, sn),
and so on. Thus this multiplication map descends to the tensor prod-

uct. It is easy to check that under this rule for scalar multiplication
M ® S becomes an S-module. U
R

Note that we can write down the rule for scalar multiplication on
generators of M ® S,
R

(s,m®s) —m®e (ss).

It is again interesting and informative to figure out what happens
for vector spaces. For example, suppose that V' is a real vector space.
Then by extension of scalars, W =V @ C is an complex vector space.

R
Note that if ey, es,..., €, is a basis of V, then e; ® 1 is a basis of W,
so that V and W have the same dimension.
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