MODEL ANSWERS TO THE SEVENTH HOMEWORK

1. §22: 4. We have

f(x) + g(z) = (22 + 42® + 30 + 2) + (32" + 22 + 4)
=3a' +22° +42° + 1

and

f(2)g(x) = (20° + 42® + 3z + 2) (32" + 27 + 4)
=2+ 22% + 42° + 2% + 22° 4z + 3.
6. A general polynomial of degree at most 2 looks like az? + bz + ¢ €
Zs|z]. There are five possibilities for a, five possibilities for b and five
possibilities for c¢. Therefore the total number of polynomials of degree
at most 2 is 5% = 125.
14. Probably the easiest way is simply trial and error:
do(2” +32° + 22 +22) =0°+3-0°+ 02 +2-0=0
pr(z° +30° + 2 +20) =1 +3- 1P+ 12421 =2
Gz’ + 323 + 2% +22) =25 +3.2° 422 42.2=2
d3(2° +32° +2* +22) =3"+3-33+3°+2.3=4
Ga(2® +323 +2? +20) =4 +3-4° +42+2.4=0.
Therefore 0 and 4 are the zeroes of 2° + 323 + 2% + 2z.
One can also attack this problem by using a little bit of theory. For a
start notice that when we evaluate the polynomial ° — x = 2% + 4z

at any point of Zs then we get zero, by Fermat. So we might as well
evaluate

2° +32° + 2+ 22 — (2° — 1) = 32° + 2% + 3z

as we will get the same values. On the other hand, we can pull out a
factor x from this polynomial to get

32° + 2* + 3z = 2(32° + 2 + 3) = 3z(2* + 22 + 1)

So if a is a zero of 2° + 323 + 2% + 2z either a = 0 or « # 0 is a zero of
2+ 2z + 1. But 22 + 22+ 1 = (z + 1)? and visibly this is zero if and
only if z + 1 =0, that is, x = 4.
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20.
fla,y) = (3¢ 4+ 2a)y° + (2 — 6 + 1)y + (2 = 20)y + (¢ — 32> 4 2)
= 32" + 22y® + 2%y? — 62y® + y* + 2ty — 22y + 2t — 327 4+ 2
= (y+ D' + (3y")2” + (v = 3)2® + (2° — 6y° — 2y)a + (v° + 2).

23. T: (a), (b), (¢), (d), (g), (h), (i),
F: (e), (f), (j)-
27. (a) Suppose that

Then
D(f(z) + (@) = D (D_(as+ b»wi)
= i (a;+b)x
= icaaT 4 bt

= D(f) + D(9).

Therefore D is a group homomorphism.
It is not a ring homomorphism. In fact D satisfies Leibniz’s rule. If

f(z) = g(x) = z then

— 9.7
£2:1
= D(x) + D(z).

(b) The kernel of D is all constant polynomials, all polynomials of
degree zero, plus zero.
(c) D is onto, so the image of F[z] is F[z|. Suppose that

g(x) = Z a;xv' € Flz].

As the characteristic of F' is zero, i - 1 # 0 and if we put

fla)=3" 7at € Fla

. a; i
D(f) = Y i 12 = Y 0’ = ()
§23: 2. We have ¢(x) = 52* + 522 4+ 62 and r(z) = z + 2 so that
(2% 4 32° + 42 — 32 + 2) = (52" + 52® + 62)(32* + 20 — 3) + (v + 2).
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10. To find the linear factors of 2® 422?422+ 1 € Zs[z], the first thing
to do is find the zeroes. One way to proceed is brute computation.

Go(2° +22° + 20 +1)=0°+2-0°+2-0+1=1
or(x® + 20 + 20+ 1) =1+2-12+2-1+1=6
Go(® + 207 +20+1)=2+2.2242.24+1=0
Gs(a® + 222 +20+1)=3"+3-324+2-3+1=3
u(® + 202 + 20+ 1) =43 +2-424+2.44+1=0
¢5(2® + 222 + 20 +1)=5>+2-52+2-5+1=4
d(® +202 + 20 +1) =6 +2-62+2-6+1=0.
Thus
22 +20° 420 4+1 = (1 —2) (v —4)(z—6) = (x+5)(x+3)(z+1) € Z;[z].
Or we could observe that since 2 is a zero, we must be able to divide
22+ 222+ 22+ 1 by v —2 =2+ 5. If we run the division algorithm
we get
2% +22% + 20 + 1 = (v + 5)(2* + 4z + 3).

We now look for zeroes of 22 4 4z 4+ 3. We know that 0 and 1 are not
Zeroes.

Go(2® +4r+3) =22 +4.-2+3=1

¢3(z* +4x+3)=3"+4-3+3=3

Gu(2® +4r+3) =4 +4-4+3=0.
Thus 4 is a zero of 22 +4x + 3. It follows that we can divide 2 +4x + 3
by © — 4 = x + 3. If we run the division algorithm we get

2’ +4r +3 = (z+3)(z + 1).
Thus
22+ 202 + 22+ 1= (2 +5)(z+3) (v + 1) € Zq[z],
as before.
14. There are many ways to show that f(x) = 2?4 8z — 2 is irreducible
over Q. First of all by Gauss, it suffices to show that it is irreducible
over Z.
If it is not irreducible it factors as
2° + 8z — 2 = (ax + b)(cxd + d) € Zlx].

As the coefficient of 2 is 1, we have ac = 1, so that a = ¢ = 1 or
a = c= —1. We may assume that a = ¢ = 1. Thus

2?2+ 8z — 2= (z+b)(xd + d) € Z[z].
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The product of b and d is two, bd = 2. Thus b = +1 and d = £+2, up
to switching b and d. The sum of b and d is 8, b+ d = 8. On the other
hand, the maximum of the sum of +£1 and £2 is 1 + 2 = 3, nowhere
near 8. Thus 22 + 8z — 2 is irreducible over Z and so it is irreducible
over Q.

We could also apply Eisenstein with p = 2.

The discriminant of 2% + 8z —2is 8% — 4. -2 =8-9 =72 > 0. Thus
2% + 8z — 2 has two real roots, a; and ay, by the quadratic formula.
Thus

2+ 81 —2=(z—a)(z — ay) € R[],
is reducible over R. In particular it is certainly reducible over C.
21. Yes. Take p = 5. Then p divides —25, 10 and 30 but p? does not
divide —30.
25. T: (a), (b), (c), (e), (£), (g), (h), (),

F: (d), (j) [depending on whether you allow the polynomial to be zero].
28. A polynomial of degree 3 is irreducible if and only if it has no
zeroes. So we just want to list the polynomials of degree 3 with no
zeroes. The general polynomial of degree three looks like

az® + bx? + cx + d € Zy[x].

Since this has degree 3, a # 0 and so we may assume that a = 1, so
that we have a polynomial of the form

2% 4+ b2* + cx + d € Zo[x].

a = 0 is a zero if and only if d = 0. So we may assume that d = 1 and
we have a polynomial of the form

2° + br* + cx + 1 € Zylx].

a=1isazeroif and only if 1 + b+ c+ 1 =0 so that b+ ¢ = 0. This
happensifb=c=0orb=c=1. Soa=1isnotazeroifb=1,c¢=0
or b =0, ¢ = 1. Thus the irreducible polynomials in Zs[z] of degree 3
are

2?4+ 2% + 1 and 2+ + 1.
3. Challenge Problems §23: 37. (a) Let

f(2) = anz™ + ap12" 7+ Far Fag = Z a;x’
(%) = bpx™ + by 2™+ by + by = Z bix',

be two polynomials in Z[z].



Then
on(f(z) +9(z)) = Em(z a;z’ + Z bix')

:Em(z ) 4+ T be
= Em(f( ) + Um(g(m))-

Thus 7,, is a group homomorphism.
We now check it is a ring homomorphism.

T F(@o(x)) = Tu((3 ) (b))
= ZZam

QI

_ Em(f(x))am(g(m))-

Therefore @, is a ring homomorphism.
(b) Suppose not, suppose that f(x) is reducible. Then we may find
g(x) and h(z) polynomials with rational coefficients such that

f(x) = g(x)h(z),

and both have degree less than n. By Gauss, we may assume that g(x)

and h(z) have integer coefficients. Since @, is a ring homomorphism,
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we have
Tm(f (@) = Tm(g(2))Tm(h(z)).
The LHS has degree n by assumption. Both 7,,(¢(x)) and 7,,(h(z))
have degree less than n, a contradiction.
Thus f(x) is irreducible over the rationals.
(c) Take m = 5. Then

Fs(2® + 172 4+ 36) = 2° + 22 + 1 € Zs[z].

We check that the RHS is irreducible. It suffices to check that it has
no zeroes. We compute

Go(x* +20+1)=0"+2-0+1=1
pr(z®+20+1)=1°+2-1+1=4
Go(2® +20+1)=2"+2-24+1=3
p3(z® +20+1)=3*+2.3+1=4
Ga(2® +2r+1) =4 +2-4+1=3.

Thus z° 422+ 1 € Zs[z] is irreducible and so x®+17x+ 36 is irreducible
over the rationals by (b).



