MODEL ANSWERS TO THE FOURTH HOMEWORK

§14: 31. Let H; and Hy be two normal subgroups of a group G. We
already know that H; N H, is a subgroup of G. We check that it is
normal. Pick h € Hi N Hy and g € G. As h € H; and H; is normal,

ghg™' € H;.
Similarly as h € Hy and H, is normal,
ghg™" € H,.
But then
ghg™' € Hy N H,.
It follows that H; N Hy is normal.
§15: 1. (0,1) generates the subgroup {0} x Z,. The index of {0} x Z,4

inside Zg X Z4 is

2:4_,
=2

Thus the quotient is a finite abelian group of order 2. It must be
isomorphic to Zs. We can also use the first isomorphism theorem. The
projection map

7w Ly X Ly — 7o given by (a,b) — a,

is a homomorphism, with image Z,. The kernel consists of all elements
(a,b) of Zy x Z4 such that a = 0, so that the kernel is

{O} X Z4.
It follows by the first isomorphism theorem that the quotient group

ZQ X Z4
{0} X Z4

is isomorphic to Zs.
6. (0,1) generates the subgroup {0} x Z. We use the first isomorphism
theorem. The projection map

m:ZxZ— 7  given by (a,b) — a,

is a homomorphism, with image Z. The kernel consists of all elements
(a,b) of Z x Z such that a = 0, so that the kernel is

{0} x Z.
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It follows by the first isomorphism theorem that the quotient group

7 X

{0} xZ
is isomorphic to Z.
§18: 2. 16 - 3 = 48. Modulo 32 this is 16.
7. nZ is indeed a ring, a subring of the integers Z. It is commutative,
there is no unity, unless n = 1 or n = 0. If n = 0 then 1 = 0 inside
the ring 0Z = {0} and it is not a field. It can only be a field if n = £1
in which case nZ = 7Z. But even then 2 does not have a multiplicative
inverse and so it is never a field.
8. Z% is not a ring. The problem is that Z* is not a group under
addition; for example 1 does not have any additive inverse. If n > 0
thenn+1>1#0.
Challenge Problems §15. 39.
(a) (1,2,3) = (1,3)(1,2) € A,. By symmetry every 3-cycle belongs to
(b) We know that every element of A, is a product of an even number
of transpositions. If we arbitrarily pair together every term of the prod-
uct, it is enough to show that the product of a pair of transpositions is
a product of cycles. A pair of transpositions (a,b) and (c¢,d) comes in
three different forms. The set

{a,b} N {c,d}

has 2, 1 or 0 elements. Up to symmetry, we therefore get three cases:

(1,2) (1,2)
(a,b), (c,d) =< (1,3) (1,2)
(1,2) (3,4).

In the first case the product is the identity and there is nothing to
prove. In the second case we have

(1,3)(1,2) = (1,2,3),
a 3-cycle. Finally in the third case we have
(17 2)(37 4) = (17 37 2)(]‘7 37 4)7

a product of two 3-cycles. It follows that every element of A, is a
product of 3-cycles.

(c) By symmetry we might as well assume that » = 1 and s = 2, and
we want to show that A, is generated by the set

{((1,2,))|3<i<n}

It is enough to show we get every 3-cycle.
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We compute the indicated products:
(1,2,i)* = (1,4,2) = (2,1,4).
so that
(1,2,7)(1,2,1)* = (1,2,5)(2,1,7) = (1,4,))
and
(]-7 27j>2(17 27 Z) - (27 ]-7])(17 27 Z) - (27 Z7j)
It follows that

(1,2,9)%(1,2,k)(1,2,5)%(1,2,9) = (2,k,9)(2,4,5) = (4,7, k).

Suppose that (a,b,c) is an arbitrary 3-cycle. Consider the cardinality
of the intersection

{a,b,e} N{1,2}.
If it is two then we have either (1,2,4) or (2,1,7) and we are okay. If
it is one then we have either (1,4, 7) or (2,4, ) are we are okay. If it is
zero we have (i, j, k) and we are okay.
(d) By symmetry we may assume that (1,2,3) € N. Let g = (1,2)(3,1)
and h = (1,2,3)* € N. Since N is a normal subgroup we have ghg™! €
N. Now (1,2,3)? = (2,1, 3) and so ghg™! is equal to

(1,2,i) € N.

By part (¢) N = A,,.

(e) As N is non-trivial, we may pick ¢ € N such that o is not the
identity. Consider the cycle type of 0. We may always write o as a
product of disjoint cycles, where the length of the cycles is increasing
(so first transpositions, then 3-cycles, etc). If the length of the longest
cycle is greater than 3 we are in case II. Otherwise o is a product
of disjoint transpositions and 3-cycles. If there is more than one 3-
cycle then we are in case III. If there is one 3-cycle there are either no
transposition and we are in case I or we are in case IV. Otherwise o
is a product of transpositions, of which there are least two since o is
even, and we are in case V.

We now check that if we are in one of these five cases then N = A,,.
Observe that if p is in A,, then

o tpopt =0 (pop~t) €N

as N is a normal subgroup. In what follows it is convenient to first
compute

a’lpa
and multiply the result by p~!. Note that to compute o~ !po we con-
jugate p by oL
Case I: N = A, by part (d).



Case II: Now suppose o has a cycle of length greater than 3. Then o
has the form
:u(ala ag, . . . 70’7‘)7

where r > 3 and p fixes a1, as, ..., a,. As p = (ay,a9,a3) € A, we must
have

o pop~t = (ay,a1,a)(ay, as, as) = (ay,as,a,) € N.
But then we are in case I and N = A,,.
Case III: Now suppose that ¢ has no cycle of length greater than 4
but it is a product of at least two 3-cycles. As the 3-cycles at the end
we have

0 = IM(CL4, as, aﬁ)(afla az, CL3),
where p fixes ay, as, ... ,as. As p = (a1, as,a4) € A, we must have

o tpop Tt = (a3, ay, ag)(ag, a1, aq) = (a1, ayq, as, ag,az) € N.

Thus N contains a 5-cycle and so we are in case II. But then N = A,,.
Case IV: Now suppose that o is a product of transpositions and one
3-cycle. As the 3-cycle is at the end

0 = ;u(ah a2, a3)7

where p is a product of disjoint transpositions, which fix a;, as and as.
Then

o = M(ah 2, as),u(al, a2, CL3)
== ,UQ(a'ba%a?))Q
= (ag,as,asz) € N.

Thus N contains a 3-cycle and we are in case I. But then N = A,,.
Case V: Now we suppose that o is a product of an even number of
disjoint transpositions. We may write

g = M(a37 a4)(a1a 0/2),
where 1 is a product of an even number of disjoint transpositions, which
fix aq, as, ag and ay. As p = (a1, a2,a3) € A, we must have

o pop Tt = (ag, a1, a4)(az, a1, a3) = (ay,a3)(as, as) € N.
Thus o = (a1, a3)(az,as) € N. As n > 5, we may pick
i ¢ {ay,as, a3 a4} where 1 < n.
Let 8 = (a1, as,i) € A,. Then
aBa Bt = (as,a1,i)(as, a1,i) = (ay,as,i) € N.

But then we are in case I and N = A,,.



