MODEL ANSWERS TO THE FIRST HOMEWORK

§10
5.

(0,18}, 14{0,18} = { 1,19}, 2+{0,18} = {2,20},..., 17+{0,18} = {17,35}.

6. The group D, has order eight and the subgroup H = {pg, 2} has
order two and so the number of cosets is 4. One coset is H. Pick an
element not in H, for example, p1,

p1H = {P1,52}'

Pick an element not in either of these two left cosets, for example, po,

p2H = {pa, pu}.
This leaves two elements, which must form their own coset,
pst = { ps, 01}.

15. We first multiply out o to represent it as a product of disjoint
cycles,

(1,2,4,5)(2,3) = (2,3,4,5,1) = (1,2,3,4,5).
So o is a 5-cycle and the order of ¢ is five. The order of S5 is 5! =
5-4! =120. So the index of o is 4! = 24.

19. T (a), (b), (c), (¢), (g), (h), (j)-
F: (d), (f), (i) (The Klein 4-group has no element of order 4).

27. Define
¢o: H— Hg by the rule h — hg.

Suppose that y € Hg. Then y = hg for some h and ¢(h) = hg =
y. Thus ¢ is onto. Suppose that ¢(hy) = ¢(hy). Then hig = hag.
Multiplying both sides by ¢g~! on the right, we get h; = ho. But then
¢ is one to one.

30. False. Take G = S3 and H = {e,(1,2)}. Let a = (1,3,2) and
b=(2,3). Then a € aH and

a=(1,3,2)=(2,3)(1,2) € bH,
so that aH = bH. But
Hb=1{(2,3),(1,2,3)},

so that a ¢ Hb. As a € Ha, Ha # Hb.
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2. The elements of Z3 x Z4 are (0,0), (1,0), (2,0), (0,1), (1,1), (2,1),
(0,2), (1,2), (2,2), (0,3), (1,3), (2,3). The order of an element is the
lem of the orders of the components:

1: (0,0)

(0,2)
(1,0), (2,0)
(0,1), (0,3)
(1,2), (2,2)
2: 1), (2,1), (1,3), (2,3).

Yes, this group is cyclic. For example, (1, 1) is a generator.

7. The order of 3 in Z,4 is 4; the order of 6 in Zi5 is 2; the order of 12
in Zog is 5; the order of 16 in Zgy is 3.

So the order of (3,6,12,16) in Zy X Zyg X Zog X Za4 is 60, the lem of 4,
2,5 and 3.

10. The order of Zy X Zy X Z5 is 8. By Lagrange the order of a subgroup
is 1, 2, 4, or 8. If the order is 1 the subgroup is the trivial subgroup
and if the order is 8 we have all of G. So we list the subgroups of order
2 and 4. Every element of Zy X Zgy X Zo, other than the identity, has
order two. Thus the subgroups of order two are:

MHO[\D

2: (0
3: (1
4: (0
6: (1
12: (1,

{(0,0,0),(1,0,0)} {(0,0,0),(0,1,0)} {(0,0,0),(0,0,1)} {(0,0,0),(1,1,1)}
{(0,0,0),(0,1,1)} {(0,0,0),(1,0,1)} {(0,0,0),(1,1,0) }.

If you take any two elements of order two and add them together this
gives three elements of order two and together with the identity this is
a subgroup of order 4. Thus the subgroups of order four are:

{(0,0,0),(0,1,0),(0,0,1),(0,1,1)}  {(0,0,0),(1,0,0),(0,0,1),(1,0,1) }
{(0,0,0),(1,0,0),(0,1,0),(1,1,00}  {(0,0,0),(0,1,1),(1,0,0),(1,1,1) }
{(0,0,0),(1,0,1),(0,1,0),(1,1,1)}  {(0,0,0),(1,1,0),(0,0,1),(1,1,1)}
{(0,0,0),(0,1,1),(1,0,1), (1,1,0) }.

12. The Klein 4 group is the unique group of order 4 not isomorphic
to a cyclic group. Zs X Zs has order 4 and it is not cyclic, so it is
isomorphic to the Klein 4 group.

Every element of the Klein 4 group has order one or two. The elements
of Zy X Zo X Zy4 of order two are Zo X Zo x 274 and this group is

isomorphic to Zs X Zg X Zo. Thus the subgroups isomorphic to the
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Klein group are:

{(0,0,0),(0,1,0),(0,0,2),(0,1,2)}  {(0,0,0),(1,0,0),(0,0,2),(1,0,2) }
{(0,0,0),(1,0,0),(0,1,0),(1,1,00}  {(0,0,0),(0,1,2),(1,0,0),(1,1,2) }
{(0,0,0),(1,0,2),(0,1,0),(1,1,2)}  {(0,0,0),(1,1,0),(0,0,2),(1,1,2) }
{(0,0,0),(0,1,2),(1,0,2),(1,1,0) }.

16. Yes. Both groups are abelian of order 24 = 23 .3. By the fun-
damental theorem of finitely generated abelian groups, there are three
abelian groups of order 24 up to isomorphism:

ZQ X ZQ X ZQ X Z37 ZQ X Z4 X Z3 and ZS X Zg.

Consider the elements of order a non-trivial power of 2. The first group
has elements only of order 2, the second group has elements of order 2
and 4 and the third group has elements of order 2, 4 and 8.

The group Zo X 71> has elements of order four but not eight. Thus
Ziy X 719 is isomorphic to the second group in the list.

The group Z4 X Zg also has elements of order four but not eight. Thus
Zy X Zg is also isomorphic to the second group in the list.

But then Zs X Z15 and Z, X Zg are isomorphic.

24. We first write down the prime factorisation of 720 = 72 - 10 =
24.32.5.

Using the fundamental theorem of finitely generated abelian groups the
abelian groups of order 720, up to isomorphism are:

ZQXZQXZQXZQXZgXZgXZ{H ZQXZQXZQXZQXZQXZg,,
ZQXZQXZ4XZ;},XZ;;XZ5, ZQXZQXZ4XZ9XZ5,
ZgXZgXZ3XZgXZ5, ZQXZgXZgXZ5, Z4XZ4XZgXZ3XZ5,

Z4XZ4XZQXZ5, th‘,XZgXZgXZgN ZlGXZQXZ5.
47. H contains the identity by assumption. Suppose that h € H. Then
h? = e, the identity. Hence h™' = h € H and so H is closed under
taking inverses. Now suppose that h; € H, ¢ = 1 and 2. Then
(hahs)* = Bahahahs

~ 1212

= e,
where we got from the first line to the second line as G is abelian.
Therefore either hyhs is the identity or it is has order two. In particular

hiho € H and H is closed under multiplication. Therefore H is a

subgroup of G.
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52. Suppose that G is a cyclic group. Then every subgroup H is cyclic.
Every element of H = Z, X Z, has order either 1 or p and the order
of H is p? and so H is not cyclic. Therefore H is not isomorphic to a
subgroup of a cyclic group G.

Now suppose that G does not contain a subgroup isomorphic to Z, x Z,.
The fundamental theorem of finitely generated abelian groups implies
that G is isomorphic to

szln X Zpgg X +oo X Lan,

where py, po, ..., p, are primes and aq, as, ..., a, are positive invegers.
Suppose that p; = p;. Then G contains a subgroup isomorphic to
Zipe X L. As Za contains a subgroup isomorphic to Z,, Zp« X Z
contains a subgroup isomorphic to Z, x Z,, a contradiction.
Thus p; = p; implies that 7 = j. But then G is a cyclic group.
Challenge Problems
45. We may assume that G = Z,. If d divides n then let a = n/d.
Then

(@)

is a subgroup of order d.

Now let H be a subgroup of GG of order d. Then d divides n by Lagrange.
On the other hand, the smallest element a of H is a generator of H.
The order of a is n/a, so that d = n/a. But then a = n/d and so there
is only one subgroup of order d.

46. Partition the elements of Z,, by their order. By Lagrange the order
must be a divisor d of n. Let P; be the elements of order d. Then

n=|Z =Y |Pl.
din

Now every element of P; generates a subgroup of order d. But there
is only such subgroup H. H is isomorphic to Z4 and a € Z, generates
Zg if and only if a is coprime to d. Thus

| Pa| = ¢(d).

Putting all of this together, we have
n = Z o(d).

dn

47. Let n be the order of GG. Partition the elements of G by their order.
By Lagrange the order must be a divisor d of n. Let P; be the elements

of order d. Then
n=|Gl=> [Pl

din
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If 2™ = e always has at most m solutions then there is at most one
subgroup of order m and so |P;| < ¢(d). Since we already saw that

n=> ¢(d).
din

we must have that |P,;| = ¢(d) for all divisors d of n. In particular
|P,| = ¢(n) # 0 and so there are elements of order n. But then G is
cyclic.



