
7. Quotient groups III

We know that the kernel of a group homomorphism is a normal
subgroup. In fact the opposite is true, every normal subgroup is the
kernel of a homomorphism:

Theorem 7.1. If H is a normal subgroup of a group G then the map

γ : G −→ G/H given by γ(x) = xH,

is a homomorphism with kernel H.

Proof. Suppose that x and y ∈ G. Then

γ(xy) = xyH

= xHyH

= γ(x)γ(y).

Therefore γ is a homomorphism.
eH = H plays the role of the identity. The kernel is the inverse

image of the identity.

γ(x) = xH = H

if and only if x ∈ H. Therefore the kernel of γ is H. �

If we put all we know together we get:

Theorem 7.2 (First isomorphism theorem). Let φ : G −→ G′ be a
group homomorphism with kernel K. Then φ[G] is a group and

µ : G/H −→ φ[G] given by µ(gH) = φ(g),

is an isomorphism.
If γ : G −→ G/H is the map γ(g) = gH then φ(g) = µγ(g).

The following triangle summarises the last statement:

G
φ- G′

G/H

γ

?
µ

-

Example 7.3. Determine the quotient group

Z3 × Z7

Z3 × {0}
Note that the quotient of an abelian group is always abelian. So

by the fundamental theorem of finitely generated abelian groups the
quotient is a product of abelian groups.
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Consider the projection map onto the second factor Z7:

π : Z3 × Z7 −→ Z7 given by (a, b) −→ b.

This map is onto and the kernel is Z3×{0}. So by the first isomorphism
theorem the quotient group is isomorphic to the image which is Z7.

Theorem 7.4. Let H be a subgroup of a group G.
The following are equivalent:

(1) ghg−1 ∈ H for all g ∈ G and h ∈ H.
(2) gHg−1 = H for all g ∈ G.
(3) gH = Hg.

Proof. Suppose that (1) holds. Then

gHg−1 = { ghg−1 |h ∈ H } ⊂ H,

for any g ∈ G.
To prove (2) we have to establish that the RHS is a subset of the

LHS. Pick h ∈ H. Then

g−1hg ∈ H,
as we assuming (1), applied to the element g−1 ∈ G. Thus g−1hg = h1
for some h1 ∈ H. Multiplying on the left by g and on the right by g−1

we get

h = gh1g
−1 ∈ gHg−1.

Thus the RHS is a subset of the LHS and (2) holds.
Now suppose that (2) holds. We have to show that gH = Hg. We

first show that the LHS is a subset of the RHS. Pick x ∈ gH. Then
x = gh, for some h ∈ H. We have

xg−1 = ghg−1 ∈ gHg−1 = H,

so that xg−1 = h1 ∈ H. But then x = h1g ∈ Hg. Thus the LHS is
a subset of the RHS. By symmetry the RHS is a subset of the LHS.
Thus (3) holds.

Finally suppose that (3) holds. Pick g ∈ G and h ∈ H and let
x = ghg−1. Then

gh ∈ gH = Hg

so that gh = h1g ∈ Hg, for some h1 ∈ H. But then

x = ghg−1 = h1gg
−1 = h1 ∈ H.

Thus (1) holds. �

Corollary 7.5. If G is abelian then every subgroup is normal.
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Proof. Suppose that H is a subgroup of G. If h ∈ H and g ∈ G then

ghg−1 = gg−1h = h ∈ H.

Thus (1) of (7.4) holds. Therefore (3) holds and so H is normal. �

Definition-Lemma 7.6. An automorphism of G is an isomorphism
φ : G −→ G.

Fix g ∈ G. Then the map

ig : G −→ G given by a −→ gag−1

is an automorphism of G, called an inner automorphism.

Proof. We have to check that ig is a group homomorphism and that ig
is a one to one correspondence.

Suppose that a and b ∈ G. We have

ig(ab) = g(ab)g−1

= ga(g−1g)bg−1

= (gag−1)(gbg−1)

= ig(a)ig(b).

Thus ig is a homomorphism.
There are two ways to check that ig is a one to one correspondence.
To check that ig is one to one, we just have to check that the kernel

is trivial. Suppose that a ∈ Ker ig. Then

gag−1 = ig(a) = e.

Multiplying on the left by g−1 and on the right by g we get

a = g−1eg = e.

Thus the kernel is trivial and ig is one to one.
Now we check that ig is onto. Suppose that b ∈ G. Let a = g−1bg ∈

G. Then

ig(a) = gag−1

= g(g−1bg)g−1

= b.

Thus ig is onto. It follows that ig is an automorphism.
Here is another way to show that ig is an automorphism. Let’s try

to write down the inverse map. We guess that the inverse of ig is ig−1 .
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We check

ig−1(ig(a)) = ig−1(gag−1)

= g−1(gag−1)g

= (g−1g)a(g−1g)

= a.

Thus the composition one way is the identity. If we replace g by g−1

we see that the composition the other way is the identity. It follows
that ig is an automorphism. �
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