
4. The kernel

We now come to the key:

Definition 4.1. Let φ : G −→ G′ be a group homomorphism. The
kernel of φ, denoted Kerφ, is the inverse image of the identity,

Kerφ = φ−1[{e′}] = { g ∈ G |φ(g) = e′ }.

By (3.10.4) the kernel is a subgroup of G.

Example 4.2. Let A ∈Mm,n(R) be an m×n matrix with real entries.
Define a map

φ : Rn −→ Rm by the rule ~v −→ A~v.

We check that φ is a group homomorphism. Suppose that ~v and ~w
are in Rn. We have

φ(~v + ~w) = A(~v + ~w)

= A~v + A~w

= φ(~v) + φ(~w).

Thus φ is a group homomorphism. In this case the kernel of φ is the
null space of A, the set of solutions to the homogeneous equation

A~x = ~0.

Theorem 4.3. Let φ : G −→ G′ be a group homomorphism and let
H = Kerφ.

Then

φ−1[{φ(a)}] = { g ∈ G |φ(g) = φ(a) } = aH = Ha.

In particular the partition of G into left cosets is exactly the same as
the partition of G into right cosets.

Proof. We want to prove that

{ g ∈ G |φ(g) = φ(a) } = aH.

We first show that the LHS is a subset of the RHS. Pick an element
g of the LHS, so that φ(g) = φ(a). Then, multiplying on the left by
φ(a)−1, we have

φ(a)−1φ(g) = e′.

By (3.10.2) we know that φ(a−1) = φ(a)−1 and so

e′ = φ(a−1)φ(g) = φ(a−1g).

Thus a−1g ∈ H. Therefore a−1g = h ∈ H so that g = ah ∈ aH. Thus
the LHS is a subset of the RHS.
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Now pick an element g of the RHS, so that g ∈ aH. Then we can
find h ∈ H so that g = ah. In this case h = a−1g. We have

e′ = φ(h)

= φ(a−1g)

= φ(a−1)φ(g)

= φ(a)−1φ(g).

Multiplying both sides on the left by φ(a) we see that φ(g) = φ(a).
Thus the RHS is a subset of the LHS. Therefore

{ g ∈ G |φ(g) = φ(a) } = aH.

By symmetry

{ g ∈ G |φ(g) = φ(a) } = Ha.

This is the first statement.
We want to show that the left cosets and the right cosets give the

same partition. Pick a ∈ G. Then a belongs to a left coset and a right
coset and we just have to show they are the same. But

aH = { g ∈ G |φ(g) = φ(a) } = Ha.

This is the second statement. �

One can rephrase the first part of (4.3) as follows. The inverse image
of any element of φ[G] is a left coset of H. For example if H is finite
then the inverse image of every point of φ[G] has the same size, the
number of elements of H.

Another way to state the second part is that the elements of φ[G]
are nothing more than the left cosets of H. In fact the elements of φ[G]
are also the right cosets of H.

Example 4.4. Let φ : C∗ −→ R+ be the map which sends a non-zero
complex number to its modulus, φ(z) = |z|.

Here C∗ = C−{0} and R+ is the set of positive real numbers under
multiplication. The modulus of a complex number is the distance to
the origin; if we use polar coordinates to represent the complex number
as z = reiθ, then |z| = r.

Then φ is a group homomorphism.

φ(z1z2) = |z1z2|
= |z1||z2|
= φ(z1)φ(z2).
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The identity in R+ is 1 so the kernel U of φ consists of all complex
numbers of modulus one. This is the unit circle in the complex plane.
The inverse image of the real number r is all complex numbers of
modulus r; this is a circle of radius r centred at the origin.

Example 4.5. Recall we defined a map in (3.8)

γ : Z −→ Zn by the rule γ(m) = r,

where r is the remainder after you divide n into m,

The kernel of φ is all integers with zero remainder, that is, all integers
divisible by n. The inverse image of 1 is the set of all integers with
remainder one. Any such integer is 1 plus a multiple of n. More
generally the inverse image of r is the set of all integers with remainder
r. Any such integer is r plus a multiple of n.

Corollary 4.6. A group homomorphism φ : G −→ G′ is one to one if
and only if Kerφ = {e}.

Proof. One direction is clear. If φ is one to one then the inverse image
of e′ contains only one element, e, so that Kerφ = {e}.

Now suppose that Kerφ = {e}. Then (4.3) implies that the inverse
image of φ(a) is the coset aH = {a}. Thus φ is one to one. �

Definition 4.7. A subgroup H of G is called normal if gH = Hg, that
is, the left coset containing g is the same as the right coset containing
g, for all g ∈ G.

Corollary 4.8. If φ : G −→ G′ is a group homomorphism then the
kernel is a normal subgroup of G.

Proof. This is the second statement of (4.3). �
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