2. PLANE ISOMETRIES

Definition 2.1. We say that a permutation ¢: R? — R? is an isom-
etry if ¢ preserves distances, that is, the distance between two points
P and Q is the same as the distance between their images ¢(P) and

$(Q).-

Isometries are sometimes also called rigid motions.

Lemma 2.2. The set of all plane isometries is a subgroup of the group
of all permutations of R2.

Proof. Suppose that ¢ and ¢ are two isometries and let £ = 1 o ¢ be
the composition. Then

§(P)=v(o(P))  and  £(Q) = ¥(d(Q))-

Then the distance between £(P) and £(Q) is the same as the distance
between ¢(P) and ¢(Q), as 1 is an isometry. On the other hand, the
distance between ¢(P) and ¢(Q) is the same as the distance between
P and @. Thus the distance between £(P) and £(Q) is the same as the
distance between P and Q).

Thus £ is an isometry and the set of all plane isometries is closed
under composition.

The identity map is obviously an isometry. If ¢ is an isometry then
so is ¢~1. Thus the set of all isometries contains the identity and is
closed under taking inverses.

It follows that the set of all isometries is a subgroup of the permu-
tation group. U

In fact isometries come in four different types:

translation 7: Slide every point by the same vector, that is, by the same dis-
tance and the same direction.
rotation p: Rotate every point around a fixed point P through an angle 6.
reflection p: Reflect every point across a line L.
glide reflection : The composition of a translation and a reflection in a line fixed
by the translation.

For example, vy(x,y) = (z — 3, —y) is a glide reflection in the z-axis.

We can separate these four types into two pairs: the first two pre-
serve orientation and the second two reverse orientation; if you
take a clock and apply an orientation reversing isometry the clock will
run backwards.

Given a subset S of R one can look at the subgroup of isometries

which fix S (as a set).
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Theorem 2.3. Every finite group of isometries of the plane is isomor-
phic to either Z, or to a dihedral group D,,, for some positive integer
n.

Sketch of proof. Suppose that ¢1, ¢o, ..., ¢, are the elements of G. Let

P = (z4,y:) = ¢i(0,0)
and set

P=<x,y>:(

Then P is the centroid of the points P, Ps, ..., P,. Suppose that
¢; € G. Then ¢;¢; = ¢, € G some k and so
¢;(F;) = ¢;(¢i(0,0)) = ¢(0,0) = P

Thus the elements of G permute the points Py, P, ..., P, and so they
fix the centroid P.

Looking at the four possible types of isometry only two of them fix
a point, rotation and reflection. Consider the orientation preserving
elements H of G. These are the rotations. A rotation only fixes one
point, so the elements of H are rotations about the centroid. Since the
product of two rotations about the same point is a rotation, H is a
subgroup of GG. Let 6 be the smallest angle of rotation. It is not hard
to see that every element represents a rotation through a multiple of

6. In other words, if p represents rotations about P through an angle
of 6 then

T+ T+ +Tm Yr+y2+ +Yn
m ’ m '

H = (0),
a cyclic subgroup of G. Note that the product of two orientation re-
versing isometries is orientation preserving. So either every element
of G is orientation preserving or m is even and half the elements are
orientation preserving. In the first case G = H ~ Z,,.

Otherwise G contains one reflection p about a line L through P.
In this case the coset Hp contains all of the reflections. Pick a point
@ # P on the line L and consider the regular n-gon given by the
images of () under rotation. Then the elements of H correspond to all
rotations of the n-gon and p corresponds to a reflection about all line

through oppositve vertices of the n-gon. Thus G is isomorphic to the
dihedral group D,,. O

It is interesting to think a little bit about infinite groups of sym-
metries. We start with symmetries of a discrete frieze. Start with a
pattern of bounded width and height and repeat it along an infinite
strip. This is the sort of pattern you might see along the wall of a

room. The symmetries of such a pattern is called a frieze group.
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For example, suppose we start with an integral sign translated by
one unit horizontally in both directions. One obvious symmetry is
translation by one unit 7. But we may pick the centre of any integral
sign and rotate by 180°, call this p. One can check that

p_lTp =71
If one compares this with what happens for the Dihedral group D, it
is natural to call this infinite frieze group D.

Another possibility is to replace the integral sign by a D. In this
case as well as the translation 7 one can reflect in a horizontal line;
call this isometry p. In this case the two isometries commute and the
group of isometries is isomorphic to Z x Zy. Yet another possibility is
to replace D with A. In this case one can reflect in a vertical line and
the resulting isometry group is again D .

A much more sophisticated example arises if one takes a sequence of
two rows of D’s, where the top row is shifted halfway across. In this
case there is a glide reflection; translate half way across and then flip
along the horizontal line dividing the two rows.

In fact there is a complete classification of all possible groups which
arise:

7, D, 7 X Lo, Dy X Zs.
Note that the same group is associated with different patterns.

It is also interesting to consider what happens if you tile the plane
by translating a figure in two different directions; the resulting group of
isometries is called a wallpaper group or a crystallographic group.

One possibility is to start with a unit square and translate it both
horizontally and vertically one unit. The symmetry group of this pat-
tern obviously contains Z X Z, the translations in both directions. But
it also contains the symmetries of a square D,.
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