19. MISCELLANEA

We know that the group of units in a finite field is always cyclic. It is interesting to figure out all of the generators in a given example.

Example 19.1. What are the generators of the units in \mathbb{Z}_{13} ?

By general theory, the units U in \mathbb{Z}_{13} are a cyclic group of order 12. Actually we can prove this by hand. Any abelian group of order $12 = 2^2 \cdot 3$ is isomorphic to one of

(1)
$$\mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_3$$
,

(2) $\mathbb{Z}_4 \times \mathbb{Z}_3$,

by the fundamental theorem of finitely generated abelian groups. The second group is cyclic. In the first group every element has order dividing six. But then for every unit $\alpha \in U$ we have

$$\alpha^{6} = 1.$$

Thus α is a root of the polynomial $x^6 - 1 \in \mathbb{Z}_{13}[x]$ and this polynomial has at most 6 roots. As U has twelve elements, this is not possible. Thus U is cyclic of order 12.

Any such is abstractly isomorphic to the group \mathbb{Z}_{12} under addition. The generators of this group are the numbers from 1 to 12 coprime to 12. This is computed by Euler's phi-function

$$\varphi(12) = \varphi(3)\varphi(4) = (3-1)(4-2) = 4.$$

Thus there are four generators of the group of units.

By Lagrange if $a \in U$ is a unit then *a* has order dividing 12. The divisors of 12 are 1, 2, 3, 4, 6 and 12. So if *a* does not have order 12, we must either have $a^4 = 1$ or $a^6 = 1$. To find a generator we just need to find *a* such that $a^4 \neq 1$ and $a^6 \neq 1$. We use trial and error. If a = 2 then

$$2^2 = 4$$
 $2^4 = 16 = 3 \neq 1$ and $2^6 = 4 \cdot 3 = 12 = -1 \neq 1$.

Thus 2 is a generator of U.

We could use trial and error to find the other generators.

Here is another way. As U has order 12, U is isomorphic to \mathbb{Z}_{12} . The generators of this are the numbers coprime to 12,

$$1 \quad 5 \quad 7 \quad \text{and} \quad 11.$$

Thus the generators of U are

$$2^1 = 2$$
 $2^5 = 6$ $2^7 = 11$ and $2^{11} = 7$.