19. Miscellanea

We know that the group of units in a finite field is always cyclic. It is interesting to figure out all of the generators in a given example.

Example 19.1. What are the generators of the units in \mathbb{Z}_{13} ?
By general theory, the units U in \mathbb{Z}_{13} are a cyclic group of order 12 .
Actually we can prove this by hand. Any abelian group of order $12=2^{2} \cdot 3$ is isomorphic to one of
(1) $\mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \mathbb{Z}_{3}$,
(2) $\mathbb{Z}_{4} \times \mathbb{Z}_{3}$,
by the fundamental theorem of finitely generated abelian groups. The second group is cyclic. In the first group every element has order dividing six. But then for every unit $\alpha \in U$ we have

$$
\alpha^{6}=1 .
$$

Thus α is a root of the polynomial $x^{6}-1 \in \mathbb{Z}_{13}[x]$ and this polynomial has at most 6 roots. As U has twelve elements, this is not possible. Thus U is cyclic of order 12 .

Any such is abstractly isomorphic to the group \mathbb{Z}_{12} under addition. The generators of this group are the numbers from 1 to 12 coprime to 12. This is computed by Euler's phi-function

$$
\varphi(12)=\varphi(3) \varphi(4)=(3-1)(4-2)=4 .
$$

Thus there are four generators of the group of units.
By Lagrange if $a \in U$ is a unit then a has order dividing 12. The divisors of 12 are $1,2,3,4,6$ and 12 . So if a does not have order 12, we must either have $a^{4}=1$ or $a^{6}=1$. To find a generator we just need to find a such that $a^{4} \neq 1$ and $a^{6} \neq 1$. We use trial and error. If $a=2$ then

$$
2^{2}=4 \quad 2^{4}=16=3 \neq 1 \quad \text { and } \quad 2^{6}=4 \cdot 3=12=-1 \neq 1 .
$$

Thus 2 is a generator of U.
We could use trial and error to find the other generators.
Here is another way. As U has order $12, U$ is isomorphic to \mathbb{Z}_{12}. The generators of this are the numbers coprime to 12 ,

$$
\begin{array}{lllll}
1 & 5 & 7 & \text { and } & 11 .
\end{array}
$$

Thus the generators of U are

$$
2^{1}=2 \quad 2^{5}=6 \quad 2^{7}=11 \quad \text { and } \quad 2^{11}=7
$$

