18. IDEALS AND QUOTIENT RINGS

The theory of ideals and quotient rings parallels the theory of normal
subgroups and quotient groups. We start with the basic properties:

Proposition 18.1. Let ¢: R — R’ be a homomorphism of rings
(1) If 0 € R is the additive identity then ¢(0) € R' is the additive
identity in R'.
(2) If a € R then ¢(—a) = —¢(a).
(8) If S is a subring of R then ¢[S] is a subring of R'.
(4) If S is a subring of R’ then ¢—1[S’] is a subring of R.
(5) If R has unity 1 then ¢(1) is unity in ¢[R).
Proof. As ¢ is a ring homomorphism it is a group homomorphism of
the underlying additive groups. (1) and (2) follow from the case of
groups homomorphisms.
For (3) we already know that ¢[S] is an an additive subgroup of R'.
If ¢(a) and ¢(b) € ¢[S] then
¢(a)o(b) = ¢(ab) € [S].
Thus ¢[5] is closed under multiplication and so ¢[S] is a subring of R'.
This is (3).
For (4) we already know that ¢~'[S'] is an an additive subgroup of
R. If a and b € ¢~ '[S] then ¢(a) and ¢(b) € S" and we have

¢lab) = ¢(a)o(b) € 67'[S'].
It follows that ab € ¢~'[S’]. Thus ¢~ ![S’] is closed under multiplication
and so ¢'[9'] is a subring of R. This is (4).
Now suppose that ¢(a) € ¢[R]. Then
¢(1)¢(a) = ¢(la)
= ¢(a).
Thus ¢(1) acts as unity in ¢[R]. This is (5). O
We recall the definition of the kernel.

Definition 18.2. If ¢: R — R’ is a homomorphism of rings then the
subring

¢ [0]={reR|¢(r)=0"}
15 called the kernel of ¢, denoted Ker ¢.

Proposition 18.3. If ¢: R — R’ is a homomorphism of rings and
H = Ker ¢ is the kernel then

¢~ [¢(a)] = a+ H.

1



Proof. Immediate since ¢ is a group homomorphism. U

Corollary 18.4. A homomorphism of rings ¢: R — R’ is a one to
one if and only if Ker ¢ = {0}.

Proof. Immediate since ¢ is a group homomorphism. U

Theorem 18.5 (First isomorphism theorem). Let ¢: R — R’ be a
ring homomorphism with kernel H.

Then R/H, the set of left cosets under addition, is a ring, with the
following addition and multiplication:

(a+H)+(b+H)=a+b+H and  (a+ H)(b+ H) =ab+ H.
Furthermore the map
pr R/H — ¢[R]  given by pla+ H) = ¢(a),
1S an isomorphism.
Proof. As usual, we only need to check the new part, the part which
relates to multiplication.

The key is to check that the given rule for multiplication is well-
defined. Suppose that

CL1+H:CL+H and b1+H:b+H

Then a; = a + h; and by = b + hy for some h; and hy € H. Consider
the product
cl = (llbl
= ((1 + hl)(b + hg)
= ab + ahg + hlb + hlhg.
We have to show that c; belongs to the same left coset as ab. If we
apply ¢ to both sides we get
¢(Cl) = (b(ab + CLhQ —I— hlb + hlhg)
= 6(0) + B(@)(ha) + 6()6(D) + H(n)6 (1)
= ¢(c) + ¢(a)0 + 09(b) + 00
= ¢(c).
Thus ¢(c¢; —¢) =0 so that ¢; — ¢ € H and so a1b; + H = ab+ H.
The fact that multiplication is associative and satisfies the distribu-
tive now follows easily.

We already know that pu is well-defined, it is one to one, onto ¢[R]

and a group homomorphism. We only have to check that u respects
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multiplication. This is again standard:
p((a+ H)(b+ H)) = plab+ H)

(a+ H)u(b+ H). O

It is natural to try to isolate the key property of the kernel that
makes all of this work. We already understand that the kernel has to
be a normal subgroup for the set of left cosets R/H to be a group under
addition. The proof of suggests that we should require also that
if h € H then ah and hb belong to H for any a and b.

Lemma 18.6. Let H be a subring of the ring R.
Then the rule

(a+H)b+H)=ab+ H

gives a well-defined multiplication if and only if ah and hb belong to H
for alla and b in R and h € H.

Proof. Suppose first that ah and hb belong to H for all a and b in R
and h € H.

Suppose that a; + H = a+ H and by + H = b+ H. Then we may
find hy and hs such that a; = a + hy and by = b+ hy. Let ¢y = a1by
and ¢ = ab. The fact that multiplication is well-defined is equivalent
to saying that c¢; lies in the same left coset as c.

We check this:

CcC1 = (llbl
= (a + hl)(b + hg)
=ab+ CLhQ + h1a1 + hlhg.
Now ahg, hib and hihs belong to H (the third product for two reasons).
Thus the sum h = aho+ hia; + hihs belongs to H. Therefore ¢; = c+h
so that ¢y + H = ¢+ H. Hence the given rule of multiplication is well-
defined.

Conversely suppose that the given rule of multiplication is well-
defined. Pick a € H and consider the product (a+ H)H. The standard
way to compute this product is:

(a+H)H =(a+H)(0+ H)
=a0+ H
=0+ H
= H.
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But if h € H then we can also compute this product as:
(a+H)H =(a+H)(h+ H)
=ah+ H.

For the product to be well-defined we must have ah + H = H, that is,
ah € H.

By symmetry we must have bh € H, computing the product H (b +
H). O

Definition 18.7. An ideal I in a ring R is an additive subgroup such
that

al C 1 and IbClI,
for all a and b € R.

Example 18.8. nZ is an ideal.
We already know it is an additive subgroup. As
a(rn) = (ra)n € nZ and (rn)b = (rb)n € nZ
it is also an ideal.

Example 18.9. Let F' be the ring of all functions from R to R and let
C be the subring of all constant functions. Then C is not an ideal.

Indeed, 2 € C' is a constant function and e belongs to F' but 2e” is
not a constant function.

Example 18.10. Let F' be the ring of all functions from R to R and
let I be the subring of all functions which vanish at —3. Then I is an
ideal.

Suppose that f(z) € I and g(z) € F. Then

(f9)(=3) = f(=3)9(=3)
= 0g(=3)
=0.
Thus [ is an ideal.

Corollary 18.11. Let R be a ring and let I be an ideal.
Then R/I is a ring with the following addition and multiplication.:

(a+H)+(b+H)=a+b+H and  (a+ H)(b+ H) =ab+ H.

Definition 18.12. The ring R/I above is called the quotient ring.
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Theorem 18.13. Let R be a ring and let I be an ideal.
Then the natural map

v: R— R/I given by r—r+1,
s a ring homomorphism with kernel I.
Proof. The only thing to check is that ~ respects multiplication:
V(wy) = xy +1
=@+ y+1)
= 7(2)7(y).

As before, putting all of this together we get:

Theorem 18.14 (First isomorphism theorem). Let ¢: R — R’ be a
ring homomorphism with kernel I. Then ¢|R)| is a ring and the map

p: R/I — ¢[R] given by y(r+1)=¢(r)
is an isomorphism. If the map
v:R— R/I is given by y(r)y=r+1
then ¢(r) = p(y(r)).
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