
15. Polynomial rings

Definition-Lemma 15.1. Let R be a ring and let x be an indetermi-
nate.

The polynomial ring R[x] is defined to be the set of all formal
sums

anx
n + an−1x

n + . . . a1x+ a0 =
∑

aix
i

where each ai ∈ R (a1, a2, . . . are called the coefficients of the poly-
nomial; ai is the coefficient of xi). Given two polynomials

f = anx
n + an−1x

n−1 + · · ·+ a1x+ a0 =
∑

aix
i

g = bmx
m + bm−1x

m−1 + · · ·+ b1x+ b0 =
∑

bix
i

in R[x] the sum of f and g, f + g, is defined as,

f+g = (an+bn)xn+(an−1+bn−1)x
n−1+· · ·+(a1+b1)x+(a0+b0) =

∑
(ai+bi)x

i,

(where we have implicitly assumed that m ≤ n and we set bi = 0, for
i > m) and the product as

fg = cm+nx
m+n+cm+n−1x

m+n−1+· · ·+c1x1+c0 =
∑
i

cix
i =

∑
i

(
∑
j

ajbi−j)x
i.

With this rule of addition and multiplication, R[x] becomes a ring, with
zero given as the polynomial with zero coefficients.

If R is commutative then R[x] is commutative. If R has unity, 1 6= 0
then R[x] has unity, 1 6= 0; 1 is the polynomial whose constant coeffi-
cient is one and whose other terms are zero.

Proof. A long and completely uninformative check. �

For example, if

f(x) = x2 − 5x+ 6 ∈ Z[x] and g(x) = 2x3 − 5 ∈ Z[x],

then

f(x) + g(x) = (x2 − 5x+ 6) + (2x3 − 5)

= 2x3 + x2 − 5x+ 1,

and

f(x)g(x) = (x2 − 5x+ 6)(2x3 − 5)

= 2x5 − 10x4 + 12x3 − 5x2 − 25x− 30.

Note that a polynomial determines a function R −→ R in an obvious
way. If one takes R to be the real numbers, then it is well known that
a polynomial is determined by the corresponding function. In general,
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however, this is far from true. For example take R = Z2 (one of the
smallest possible rings). Then there are four functions from R to R and
there are infinitely many polynomials. Thus two different polynomials
will often determine the same function.

Definition 15.2. Let R be a ring and let f ∈ R[x] be a non-zero
polynomial with coefficients in R. The degree of f is the largest n
such that the coefficient of xn is non-zero.

Polynomial rings give interesting examples of infinite rings of finite
characteristic. For example Z2[x] has infinitely many polynomials—
just let the degree go to infinity—but the characteristic is two. Indeed
if you add a polynomials to itself you are just adding the coefficients
to themselves, which are then all zero.

More generally Zn[x] is an infinite ring of finite characteristic n.

Lemma 15.3. Let R be an integral domain and let f and g be two
non-zero elements of R[x].

Then the degree of fg is the sum of the degrees of f and g. In
particular R[x] is an integral domain.

Proof. Suppose that

f = anx
n + an−1x

n−1 + · · ·+ a1x+ a0

g = bmx
m + bm−1x

m−1 + · · ·+ b1x+ b0,

where an and bm are non-zero. Then anbm is non-zero and this is the
largest non-zero coefficient of the product. So the degree of fg is n+m
which is the degree of f plus the degree of g. This is the first statement.

The second statement follows, by observing that a product fg can
only equal zero if its degree is zero. In this case both f and g are
constant polynomials and their product in R[x] is equal to their product
in R. As R is an integral domain this is zero only if one of f and g is
zero. �

Lemma 15.4. Let R be an integral domain.
Then the units in R[x] are precisely the units in R.

Proof. One direction is clear. A unit in R is a unit in R[x].
Now suppose that f(x) is a unit in R[x]. Given a polynomial g,

denote by d(g) the degree of g(x). Now f(x)g(x) = 1. In particular
neither f(x) nor g(x) is zero. Thus

0 = d(1)

= d(fg)

= d(f) + d(g).
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Thus both of f and g must have degree zero. It follows that f(x) = f0
and that f0 is a unit in R[x]. �

It is interesting to consider what the field of fractions of a polynomial
ring looks like. Suppose that F is a field and consider the polynomial
ring F [x]. The field of fractions consists of all ratios of two polynomials
with coefficients in F ,

{ f(x)

g(x)
| f(x), g(x) ∈ F [x] }.

These are called rational functions and the field of rational functions
is denoted F (x). More generally if R is an integral domain with field
of fractions F then F (x) is the field of fractions of R[x].

For example,
2x− 3

x2 − 5x+ 6
∈ Z(x) = Q(x).

We can also work with polynomial rings in one more than variable.
We do the case of two variables but the general case is the same.

Definition 15.5. Let R be a commutative ring and let x and y be
indeterminates.

A monomial in x and y is a product of powers of x and y,

xiyj.

The degree d of a monomial is the sum of the degrees of the indi-
vidual terms, i+ j.

The polynomial ring R[x, y] is equal to the set of all finite formal
sums ∑

i,j

aijx
iyj

with the obvious addition and multiplication. The degree of a poly-
nomial is the maximum degree of a monomial term that appears with
non-zero coefficient.

Example 15.6. Let x and y be indeterminates. A typical element of
Q[x, y] might be

x2 + y2 − 1.

This has degree 2. Note that xy also has degree two. A more compli-
cated example might be

2

3
x3 − 7xy + y5,

a polynomial of degree 5.
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The nice thing about polynomial rings in one more than one variable
is that one can construct them iteratively as polynomial rings in one
variable. Again, we just do the case of two variables:

Lemma 15.7. Let R be a commutative ring and let x and y be inde-
terminates. Let S = R[x]. Then there is a natural isomorphism

R[x, y] ' S[y].

We will skip the proof which is not hard but we will try to illustrate
how the proof proceeds by giving an example. Consider the polynomial

2

3
x3 − 7xy + y5 ∈ Q[x, y].

Consider this as a polynomial in y, whose coefficients lie in the ring
Q[x], so that

y5 + (−7x)y + 2/3x3 ∈ Q[x][y].

Note that by symmetry we may also consider the as a polynomial in x
with coefficients in the ring Q[y],

2

3
x3 + (−7y)x+ y5 ∈ Q[y][x].

Lemma 15.8. If R is an integral domain then so is R[x1, x2, . . . , xn].

Proof. We just do the case of two variables x and y; the general case
is by induction on the number of variables.

As R is an integral domain (15.3) implies that R[x] is an integral
domain. As R[x] is an integral domain (15.3) implies that R[x][y] is
an integral domain. As R[x, y] is isomorphic to R[x][y] it follows that
R[x, y] is an integral domain. �

In particular if R is an integral domain then there is a field of frac-
tions R(x, y) of R[x, y]. As in the case of one variable the elements of
R(x, y) are rational functions, the quotients of polynomials with coef-
ficients in R.

It is interesting to understand the various ring homomorphisms at-
tached to a polynomial ring. We start with a really obvious one.

Lemma 15.9. Let R be a ring. The natural inclusion

R −→ R[x]

which just sends an element r ∈ R to the constant polynomial r, is a
ring homomorphism.

Proof. Easy. �

The following is a little bit more complicated but very useful:
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Definition 15.10. Suppose that R ⊂ S is a subring of the ring S. Let
α be an element of S.

Then the map
φα : R[x] −→ S,

which sends

anx
n + an−1x

n−1 + · · ·+ a1x+ a0 −→ anα
n + an−1α

n−1 + · · ·+ a1α+ a0

is a ring homomorphism.
It is characterised by the property that it sends x to α and has no

effect on the coefficients.
This map is called evaluation at α.

Proof. An exercise for the reader. �

We will be mostly interested in the case when R and S are fields.

Example 15.11. Consider the ring homomorphism evaluation at zero

φ0 : Q[x] −→ R.

This sends the polynomial

anx
n+an−1x

n−1+· · ·+a1x+a0 −→ an0n+an−10
n−1+· · ·+a10+a0 = a0.

Thus a polynomial is sent to its constant term.

Example 15.12. Consider the ring homomorphism evaluation at three

φ3 : Q[x] −→ R.

This sends the polynomial

anx
n + an−1x

n−1 + · · ·+ a1x+ a0 −→ an3n + an−13
n−1 + · · ·+ a13 + a0.

Note that
φ3(x

2 − 5x+ 6) = 32 − 5 · 3 + 6 = 0.

Thus x2 = 5x+ 6 is in the kernel N of φ3.
Of course x2 − 5x+ 6 = (x− 2)(x− 3) and x− 3 is in the kernel N

of φ3.

Example 15.13. Consider the ring homomorphism evaluation at i

φi : Q[x] −→ C.

This sends the polynomial

anx
n + an−1x

n−1 + · · ·+ a1x+ a0 −→ ani
n + an−1i

n−1 + · · ·+ a1i+ a0.

Note that
φi(x

2 + 1) = i2 + 1 = 0

Thus x2 + 1 is in the kernel N of φi.
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Example 15.14. Consider the ring homomorphism evaluation at π

φπ : Q[x] −→ C.

This sends the polynomial

anx
n + an−1x

n−1 + · · ·+ a1x+ a0 −→ anπ
n + an−1π

n−1 + · · ·+ a1π+ a0.

It turns out that the kernel N of φπ is trivial, so that φπ is one to
one. It follows that Q[π] is isomorphic to Q[x].

Definition 15.15. Suppose that E ⊂ F is a subfield of the field F . Let
α be an element of F .

We say that α is a zero of f(x) ∈ E[x], if f(x) is in the kernel N
of φα.

Of course f(x) is in the kernel if and only if φα(f(x)) = 0.

6


	15. Polynomial rings

