
14. Field of fractions

If R is an integral domain we have seen that the cancellation laws
hold,

if ab = ac and a 6= 0 then b = c.

One obvious reason why the cancellation laws might hold is that a has
a multiplicative inverse. Multiply both sides by a−1 and it is clear why
we can cancel a.

The integers Z are an integral domain but not every element has an
inverse. For example 2 does not have an inverse. On the other hand
the integers sit naturally inside the rational numbers Q. The rational
numbers are a field so every non-zero element has an inverse.

In fact the rational numbers are constructed from the integers. We
would like to mirror this construction for any integral domain. For
every integral domain R we would like to construct a field F which
contains R (or at least a copy of R).

The rational numbers Q are constructed from the integers Z by
adding inverses. In fact a rational number is of the form a/b, where a
and b are integers. (We will use the same notation for a field F , we will
write 1/b for the multiplicative inverse of b and so we will write a/b
for ab−1 = b−1a). Note that a rational number does not have a unique
representative in this way. In fact

a

b
=
ka

kb
,

where k is any integer. So really a rational number is an equivalence
class of pairs [a, b], where two such pairs [a, b] and [c, d] are equivalent
if and only if ad = bc.

Now given an arbitrary integral domain R, we will perform the same
construction.

Definition-Lemma 14.1. Let R be any integral domain. Let N be
the subset of R×R such that the second coordinate is non-zero.

Define an equivalence relation ∼ on N as follows.

(a, b) ∼ (c, d) if and only if ad = bc.

Proof. We have to check three things, reflexivity, symmetry and tran-
sitivity.

Suppose that (a, b) ∈ N . Then

a · b = a · b

so that (a, b) ∼ (a, b). Hence ∼ is reflexive.
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Now suppose that (a, b), (c, d) ∈ N and that (a, b) ∼ (c, d). Then
ad = bc. But then cb = da, as R is commutative and so (c, d) ∼ (a, b).
Hence ∼ is symmetric.

Finally suppose that (a, b), (c, d) and (e, f) ∈ R and that (a, b) ∼
(c, d), (c, d) ∼ (e, f). Then ad = bc and cf = de. Then

(af)d = (ad)f

= (bc)f

= b(cf)

= (be)d.

As (c, d) ∈ N , we have d 6= 0. Cancelling d, we get af = be. Thus
(a, b) ∼ (e, f). Hence ∼ is transitive. �

Definition-Theorem 14.2. The field of fractions of R, denoted
F , is the set of equivalence classes, under the equivalence relation de-
fined above. Given two elements [a, b] and [c, d] define

[a, b] + [c, d] = [ad+ bc, bd] and [a, b] · [c, d] = [ab, cd].

With these rules of addition and multiplication F becomes a field. More-
over there is a natural one to one ring homomorphism

φ : R −→ F,

so that we may identify R as a subring of F .

Proof. First we have to check that this rule of addition and multiplica-
tion is well-defined. Suppose that [a, b] = [a′, b′] and [c, d] = [c′, d′]. By
commutativity and an obvious induction (involving at most two steps,
the only real advantage of which is to simplify the notation) we may
assume c = c′ and d = d′. As [a, b] = [a′, b′] we have ab′ = a′b. Thus

(a′d+ b′c)(bd) = a′bd2 + bb′cd

= ab′d2 + bb′cd

= (ad+ bc)(b′d).

Thus [a′d+ b′c, b′d] = [ad+ bc, bd]. Thus the given rule of addition is
well-defined. It can be shown similarly (and in fact more easily) that
the given rule for multiplication is also well-defined.

We leave it is an exercise for the reader to check that F is a commu-
tative ring under addition and that multiplication is associative. For
example, note that [0, 1] plays the role of 0 and [1, 1] plays the role of
1.

Given an element [a, b] in F , where a 6= 0, then it is easy to see that
[b, a] is the inverse of [a, b]. It follows that F is a field.
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Define a map

φ : R −→ F,

by the rule

φ(a) = [a, 1].

Again it is easy to check that φ is indeed a one to one ring homo-
morphism. �

Note that the field of fractions F is the smallest field containing R.

Example 14.3. If R = Z then the field of fractions is (isomorphic to)
Q.

The integers are contained in many other fields. For example Z ⊂ R
and Z ⊂ C. Both fields contain the rational numbers.

It is in fact the case that the field of fractions is unique in a well-
defined sense.

Theorem 14.4. Let F be the field of quotients of an integral domain
R and let L be any field containing R.

Then there is a ring homomorphism ψ : F −→ L which is an iso-
morphism of F with its image ψ(F ) ⊂ L.

Example 14.5. The Gaussian integers R are all complex numbers
whose real and imaginary part are integers.

R = { a+ bi | a, b ∈ Z } ⊂ C.

It is easy to see that R is closed under addition and multiplication
of complex numbers, so that R is a subring of the complex numbers.
Therefore R is commutative, contains no zero-divisors and contains
unity, 1 6= 0. Therefore R is an integral domain.

The complex numbers C are a field. Therefore the field of fractions
of R sits naturally inside the complex numbers. The Gaussian integers
contain the integers and so the field of fractions of the Gaussian integers
must contain the rational numbers.

Hence the field of fractions of the Gaussian integers must contain all
complex numbers whose real and imaginary part are rationals:

S = { a+ bi | a, b ∈ Q } ⊂ C.
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We check that all ratios of Gaussian integers are of this form:

a+ bi

c+ di
=

(a+ bi)(c− di)
(c+ di)(c− di)

=
ac+ bd+ (bc− ad)i

c2 + d2

=
ac+ bd

c2 + d2
+

(bc− ad)i

c2 + d2
∈ S,

as
ac+ bd

c2 + d2
and

bc− ad
c2 + d2

are rational numbers.
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