11. Integral domains

Consider the polynomial equation
\[x^2 - 5x + 6 = 0. \]
The usual way to solve this equation is to factor
\[x^2 - 5x + 6 = (x - 2)(x - 3). \]
Now our equation reduces to
\[(x - 2)(x - 3) = 0. \]
If we are trying to find the complex solutions to this equation we argue
that either \(x = 2 \) since \(x = 3 \), since the only way that a product can
be zero is if one of the factors is zero.

But now suppose that we work in a different ring, say the ring \(\mathbb{Z}_{12} \).
In this case we can still factor the polynomial equation and it is still
true that \(x = 2 \) and \(x = 3 \) are both solutions to this equation. The
problem is that there might be more, since
\[
2 \cdot 6 = 3 \cdot 4 = 8 \cdot 3 = 4 \cdot 6 = 6 \cdot 6 = 6 \cdot 8 = 6 \cdot 10 = 8 \cdot 9 = 0.
\]
In fact if \(x - 2 = 4 \) then \(x - 3 = 3 \) and so \(x = 2 + 4 = 6 \) is also a
solution to the polynomial equation
\[x^2 - 5x + 6 = 0. \]
Similarly if \(x - 2 = 9 \) then \(x - 3 = 8 \) and so \(x = 11 \) is a solution.

We encode this property in a:

Definition 11.1. Let \(R \) be a ring. We say that two non-zero elements
\(a \in R, a \neq 0 \) and \(b \in R, b \neq 0 \) are **zero-divisors** if
\[ab = 0. \]

Proposition 11.2. The zero-divisors of \(\mathbb{Z}_n \) are precisely the non-zero
elements which are not coprime to \(n \).

Proof. Pick a non-zero \(m \in \mathbb{Z}_n \). Suppose that \(m \) is not coprime to \(n \)
and let \(d > 1 \) be the gcd. Then
\[m \left(\frac{n}{d} \right) = \left(\frac{m}{d} \right) n \]
which is zero modulo \(n \). Thus \(m(n/d) = 0 \) in \(\mathbb{Z}_n \) whilst neither \(m \) nor
\(n/d \) is zero. Thus \(m \) is a zero-divisor.

Now suppose that \(m \) is coprime to \(n \). If \(ms = 0 \) in \(\mathbb{Z}_n \) then \(n \) divides
the product of \(ms \) in \(\mathbb{Z} \). As \(n \) is coprime to \(m \), \(n \) must divide \(s \). But
then \(s = 0 \) in \(\mathbb{Z}_n \). It follows that \(m \) is not a zero-divisor. \(\square \)

Corollary 11.3. If \(p \) is a prime then \(\mathbb{Z}_p \) has no zero divisors.
Proof. Immediate from (11.2). □

Definition-Theorem 11.4. Let R be a ring. Then R contains no zero-divisors if and only if the cancellation laws holds in R, that is,

if $ab = ac$ and $a \neq 0$ then $b = c$,

and

if $ba = ca$ and $a \neq 0$ then $b = c$.

Proof. Suppose that a and b are zero divisors. Let $c = 0$. By assumption $b \neq c$ but

$$ab = 0 = a0 = ac$$

so that the cancellation law does not hold.

Now suppose that $a \neq 0$ is not a zero-divisor and

$$ab = ac.$$

We have

$$a(b - c) = ab - ac$$

$$= 0.$$

As a is not a zero-divisor $b - c = 0$. But then $b = c$.

By symmetry if $ba = ba$ then $b = c$ as well. □

Definition 11.5. We say that a ring R is an integral domain if R is commutative, with unity $1 \neq 0$, has no zero-divisors.

Many of the examples we have seen so far are in fact not integral domains.

Example 11.6. Both \mathbb{Z} and \mathbb{Z}_p are integral domains, where p is a prime. \mathbb{Z}_n is not an integral domain if n is composite.

If R and S are integral domains then surprisingly the product $R \times S$ is never an integral domain:

$$(1,0) \cdot (0,1) = (0,0),$$

but neither $(1,0)$ nor $(0,1)$ are zero.

Example 11.7. $M_2(\mathbb{Z}_2)$ contains zero-divisors.

For example,

$$\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}.$$

Lemma 11.8. If a is a unit then a is not a zero-divisor.
Proof. Suppose that \(ba = 0 \) and that \(c \) is the multiplicative inverse of \(a \). We compute \(bac \), in two different ways.

\[
\begin{align*}
 bac &= (ba)c \\
 &= 0c \\
 &= 0.
\end{align*}
\]

On the other hand

\[
\begin{align*}
 bac &= b(ac) \\
 &= b1 \\
 &= b.
\end{align*}
\]

Thus \(b = bac = 0 \). Thus \(a \) is not a zero-divisor. \(\square \)

Proposition 11.9. Every field is an integral domain.

Proof. A field is a commutative ring, with unity \(1 \neq 0 \) and by (11.8) there are no zero divisors. Thus every field is an integral domain. \(\square \)

Unfortunately the converse is not true.

Example 11.10. \(\mathbb{Z} \) is an integral domain but not a field.

However we do have:

Theorem 11.11. Every finite integral domain \(D \) is a field.

Proof. Pick a non-zero element \(a \in D \). Define a function

\[
f : D \rightarrow D \quad \text{by the rule} \quad b \rightarrow ab.
\]

Suppose that \(f(b_1) = f(b_2) \). Then \(ab_1 = ab_2 \). As \(D \) is an integral domain we can cancel, so that \(b_1 = b_2 \). But then \(f \) is one to one.

As \(D \) is finite and \(f \) is one to one, it follows that \(f \) is onto. As \(1 \in D \), we may find \(b \in D \) such that \(f(b) = 1 \). But then \(ab = 1 \). If follows that \(a \) is a unit, so that \(D \) is a field. \(\square \)

Corollary 11.12. If \(p \) is a prime then \(\mathbb{Z}_p \) is a field.

Proof. \(\mathbb{Z}_p \) is a domain and it is finite, so (11.11) implies that it is a field. \(\square \)

Note that we can do linear algebra over any field, not just the reals. So we can do linear algebra over a finite field.

Definition 11.13. The **characteristic** of a ring \(R \) is the smallest non-zero integer \(n \) such that \(n \cdot a = 0 \) for every \(a \in R \), if there is any such \(n \); otherwise the characteristic is zero.
Example 11.14. \(\mathbb{Z}_n \) has characteristic \(n \); \(\mathbb{Z}, \mathbb{Q}, \mathbb{R} \) and \(\mathbb{C} \) all have characteristic zero.

Theorem 11.15. If \(R \) is a ring with unity then the characteristic is the smallest \(n \) such that \(n \cdot 1 = 0 \) if there is any such \(n \); otherwise the characteristic is zero.

Proof. If \(n \cdot 1 \) is never zero then surely the characteristic is zero.

On the other hand if \(n \cdot 1 = 0 \) and there is no smaller \(n \) then surely the characteristic is at least \(n \). If \(a \in R \) then

\[
n \cdot a = a + a + \cdots + a
\]

\[
= a1 + a1 + \cdots + a1
\]

\[
= a(1 + 1 + \cdots + 1)
\]

\[
= a(n \cdot 1)
\]

\[
= a0
\]

\[
= 0.
\]

Thus the characteristic is indeed \(n \). \(\square \)