10. BASIC PROPERTIES OF RINGS

Lemma 10.1. Let R be a ring and let a and b be elements of R.
Then
(1) a0 = 0a = 0.
(2) a(=b) = (=a)b = —(ab)
(3) (=a)(~b) = ab.
Proof. Let x = a0. We have

xz = al
=a(0+0)
= a0+ a0

=x+x.

Adding —x to both sides, we get x = 0. By symmetry Oa = 0. This is

(1).
Let y = a(—b). We want to show that y is the additive inverse of ab,
that is, we want to show that y + ab = 0. We have

y+ ab = a(—b) + ab
=a(—b+10)
= a0
—0,

by (1). By symmetry (—a)b = —ab. Hence (2).

(—a)(=b) = —(a(=b))
=——ab

= ab,
which is (3). O

Definition 10.2. Let ¢: R — S be a function between two rings. We
say that ¢ is a ring homomorphism if for every a and b € R,

¢(a+b) = ¢(a) + ¢(b)
¢(a-b) = ¢(a) - $(b).

Note that a ring homomorphism is automatically a group homomor-
phism. In particular the kernel of ¢ is an additive subgroup of R and

¢ is one to one if and only if Ker ¢ = {0}.
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Example 10.3. Let F' be the ring of all functions from R to R. Given
a € R we have an evaluation homomorphism

Oo: F— R given by f— f(a),
which sends a function f: R — R to its value at a.

We have already seen that ¢ is a group homomorphism. We check
it is a ring homomorphism. Pick f and g € F'. Then

¢(f9) = (f9)(a)
= fla)g(a)
= o(f)o(9)-

Therefore ¢ is a ring homomorphism.

Example 10.4. Let ¢: Z — 7Z, be the map which sends a to its
remainder r modulo n.

We have already seen that ¢ is a group homomorphism. We check it
is a ring homomorphism. Suppose that a and b are integers. We may
write

a=qn-+rnr and b= qon + rs.
Then
ab = (qn +11)(gan + 79)
= (q1@2n + 11q2 + T2q1)n 4 7170

It follows that
¢(ab) = riry
= ¢(a)o(b).

Definition 10.5. A ring homomorphism ¢: R — R’ is an isomor-
phism if ¢ is one to one and onto.

Example 10.6. Consider the two rings Z and 27Z.
These are isomorphic as groups, since the function
7 — 27 which sends n — 2n,

is a group homomorphism is one to one and onto. However ¢ is not an
isomorphism of rings (in fact they are not isomorphic as rings). Indeed,

o(1.1) =¢(1) =2 whilst o(1)p(l) =2-2=4#2.
Thus
¢(1.1) # d(L)p(1).
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Definition 10.7. We say that the ring R is commutative if multi-
plication is commutative.
(8) (Commutativity) a-b="b- a.
We say that R is a ring with unity if
(9) (Unity) There is an element 1 € R such that for all a in R,
a-l=a=1-a.

Note that matrix groups M, (R) are not commutative in general, even
when R is commutative but if R has unity M, (R) does have unity, since
the identity matrix acts as the identity. The integers, rationals, reals
and complex numbers are commutative rings with unity. However 27
is a commutative ring without unity. In particular it is not isomorphic
to the integers.

Let R be the ring with a single element 0. Then R is a commutative
ring with unity. In all other rings, 1 # 0.

Example 10.8. Let R and S be two rings. Then R xS is commutative
if and only if R and S are commutative and R X S is a ring with unity
iof and only of R and S are rings with unity.

Definition 10.9. Let R be a ring with unity, 1 # 0.

An element u € R is called a unit if u has a multiplicative inverse
in R, that s, there is an element v € R such that uwv =1 = vu.

We say that R is a division ring if every non-zero element of R is
a unit. We say that R is a field if R is a commutative division ring.

Note that zero is never a unit in a ring with unity 1 # 0. Indeed,
O0a =0 # 1.
Example 10.10. What are the units in Zy5?

Note that the multiples of 3:
3, 6, 9, and 12

are not units, since a multiple, of a multiple of three, is a multiple of
three:
m(3n) = 3mn,
and the remainder when you divide by 15 is still a multiple of three.
Similarly the multiples of 5:
5 and 10

are also not units.
1, and 14 = —1 are units, since

14-14 = (=1)(=1) = 1.
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2 is a unit, since
2-8=16=1 mod 15.
By the same token, 8 is a unit and so both
13=-2 and 7=—-8 mod 15.
are units, since
13-7=(-2)-(-8)=2-8=1 mod 15.

4 is a unit, since
42=16=1 mod 15.

Therefore 11 = —4 mod 15 is also a unit, as
112 = (—4)?=4>=1 mod 15.
Thus the units are
1, 2, 4, 7, 8, 11, 13, and 14.
Example 10.11. The only units in Z are +1; Z is not a field. For
example 2 does not have a multiplicative inverse. On the other hand,
QcRCcC,

s a tower of subfields.

Let us introduce some convenient notation. If ¢ € R then
at+a=2-a at+at+a=3-a and at+a+---+a=n-a.

Note that this is not the same as multiplication in the ring, it is just
very convenient shorthand; for example most rings won’t contain 2 or

3.

Lemma 10.12. Ifr and s are coprime natural numbers then the rings
Lvs and L. X Ly are isomorphic.

Proof. The two additive groups Z,; and Z, x Z4 are isomorphic as
groups, since they are both cyclic groups of order rs. As 1is a generator
of Z,s and (1,1) is a generator of Z, X Zs, if we define a map

O: Lopg — L X L by the rule n=n-1—n-(1,1),

then ¢ is an isomorphism of groups. To check it is a ring homomor-
phism, observe that

¢(nm) = (nm) - (1,1)
= [n- (L, D]m - (1,1)]
= p(n)p(m).

Thus ¢ is a ring homomorphism and so ¢ is a ring isomorphism.  [J
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