
1. Direct products and finitely generated abelian groups

We would like to give a classification of finitely generated abelian
groups. We already know a lot of finitely generated abelian groups,
namely cyclic groups, and we know they are all isomorphic to Zn if they
are finite and the only infinite cyclic group is Z, up to isomorphism.

Is this all? No, the Klein 4-group has order four, so it is definitely
finitely generated, it is abelian and yet it is not cyclic, since every
element has order two and not four.

We are going to give a way to produce new groups from old groups.

Definition 1.1. Let X and Y be two sets.
The Cartesian product of X and Y , denoted X × Y , is the set of

all ordered pairs, (x, y), x ∈ X and y ∈ Y ,

X × Y = { (x, y) |x ∈ X, y ∈ Y }.

We can also take the Cartesian product of three sets, four sets, or
even n sets, X1, X2, . . . , Xn.

Given two groups H and G we are going to make the Cartesian
product H ×G into a group.

Definition-Theorem 1.2. Let H and G be two groups.
Given (h1, g1) and (h2, g2) ∈ H ×G define the product by the rule:

(h1, g1)(h2, g2) = (h1h2, g1g2).

With this rule for multiplication, H × G becomes a group, called the
direct product of H and G.

If H and G are abelian then so is H ×G.

Proof. We have to check the axioms for a group. We first check this
product is associative. Suppose that (hi, gi) ∈ H ×G, for i = 1, 2 and
3. We have

(h1, g1)[(h2, g2)(h3, g3)] = (h1, g1)(h2h3, g2g3)

= ((h1(h2h3), g1(g2g3))

= ((h1h2)h3, (g1g2)g3)

= (h1h2, g1g2)(h3, g3)

= [(h1, g1)(h2, g2)](h3, g3),

which is associativity.
Suppose that e ∈ H is the identity in H and f ∈ G is the identity

in G. If (h, g) ∈ H ×G then

(e, f)(h, g) = (eh, fg) = (h, g)
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and

(h, g)(e, f) = (he, gf) = (h, g).

Thus (e, f) plays the role of the identity in H ×G.
Finally suppose that (h, g) ∈ H × G. We check that (h−1, g−1) ∈

H ×G is the inverse of (h, g):

(h−1, g−1)(h, g) = (h−1h, g−1g) = (e, f)

and

(h, g)(h−1, g−1) = (hh−1, gg−1) = (e, f).

Thus (h−1, g−1) is the inverse of (h, g) and H ×G is a group.
Now suppose that H and G are abelian. If (hi, gi) ∈ H × G, i = 1

and 2 then

(h1, g1)(h2, g2) = (h1h2, g1g2) = (h2h1, g2g1) = (h2, g2)(h1, g1),

and so H ×G is abelian. �

Example 1.3. Consider the direct product of Z2 with itself, Z2 × Z2.
This group has four elements, (0, 0), (1, 0), (0, 1) and (1, 1); (0, 0) is
the identity. We have

(0, 0) + (0, 0) = (0, 0) (1, 0) + (1, 0) = (0, 0)

(0, 1) + (0, 1) = (0, 0) (1, 1) + (1, 1)= (0, 0).

Thus every element of Z2×Z2, other than the identity (0, 0), has order
two. As this is an abelian group of order 4 it must be isomorphic to
the Klein 4-group.

Example 1.4. Consider the direct product of Z2 with Z3, Z2×Z3. This
group has six elements, (0, 0), (1, 0), (0, 1), (1, 1), (0, 2) and (1, 2). We
have

(1, 1) + (1, 1) = (0, 2) (1, 1) + (0, 1) = (1, 0)

(1, 1) + (1, 0) = (0, 1) (1, 1) + (0, 1)= (1, 2).

As (1, 1) + (1, 2) = (0, 0), (1, 1) is an element of order 6. It follows
that Z2 × Z3 is a cyclic group with generator (1, 1) so that Z2 × Z3 is
isomorphic to Z6.

Proposition 1.5. Let m1,m2, . . . ,mk be a sequence of positive inte-
gers.

Then
k∏

i=1

Zmi
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is cyclic if and only if they are pairwise coprime.

Proof. We only do the case k = 2; the general case is similar. Suppose
that m = m1 and n = m2. Suppose that m and n are coprime. The
order of Zm × Zn is mn. What is the order of (1, 1)? We have

α(1, 1) = (α, α),

for α any integer. If this is zero then the first and second entries are
zero. The first entry is zero if and only if m divides α. The second
entry is zero if and only if n divides α. If m and n are coprime then
the smallest positive integer divisible by both m and n is mn. Thus
(1, 1) is an element of order mn and so Zm×Zn is cyclic, generated by
(1, 1).

Now suppose that m and n are not coprime. We have to show that
Zm × Zn is not cyclic. Let d > 1 be the gcd of m and n and let

α =
mn

d
.

Then

α =
n

d
m and α =

m

d
n,

is a multiple of both m and n. Suppose that (r, s) ∈ Zm×Zn. We have

α(r, s) = (αr, αs) = (0, 0),

since αr is a multiple of m and αs is a multiple of n. Thus every
element of Zm × Zn has order at most α which is less than mn and so
Zm × Zn is not cyclic. �

Example 1.6. Z2 × Z3 × Z5 is cyclic of order 30.

Note that the number
mn

d

introduced in the proof of (1.5) is the least common multiple of m and
n, the smallest number divisible by both m and n. One can generalise
the proof of (1.5) to:

Lemma 1.7. If

(a1, a2, . . . , an) ∈
n∏

i=1

Gi

and ai has order ri in Gi then the order of (a1, a2, . . . , an) is the least
common multiple of r1, r2, . . . , rn.
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Example 1.8. Consider the order of

(3, 6, 5) ∈ Z27 × Z24 × Z50.

Now 3 has order 9 in Z27, 6 has order 4 in Z24 and 5 has order 10 in
Z50.

The least common multiple of 9, 4 and 10 is 180. Thus the order of
(3, 6, 2) is 180.

Note that the product of n cyclic groups of the form Zn or Z is
always generated by the n elements, (1, 0, . . . , 0), (0, 1, . . . , 0), . . . . For
example, if n = 3 then

(1, 0, 0), (0, 1, 0) and (0, 0, 1)

generate the product of three cyclic groups.
Note also that the group H × G contains a copy of both H and G.

Indeed, consider
G′ = { (e, g) | g ∈ G },

where e is the identity of H. There is an obvious correspondence be-
tween G and G′, just send g to (e, g), and under this correspondence
G and G′ are isomorphic, since e just goes along for the ride.

Finally note that H×G and G×H are isomorphic; the natural map
which switches the factors is an isomorphism.

Theorem 1.9 (Fundamental Theorem of finitely generated abelian
groups). Every finitely generated abelian group is isomorphic to a prod-
uct

Zp
a1
1
× Zp

a2
2
× · · · × Zpann × Z× Z× · · · × Z,

where p1, p2, . . . , pn are prime numbers and a1, a2, . . . , an are positive
integers.

The direct product is unique, up to re-ordering the factors, so that
the number of copies of Z and the prime powers are unique.

Example 1.10. Find all abelian groups of order 504, up to isomor-
phism.

We first find the prime factorisatiom of 504,

504 = 23 · 32 · 7.
Using (1.9) we have the following possibilities:

(1) Z2 × Z2 × Z2 × Z3 × Z3 × Z7.
(2) Z2 × Z2 × Z2 × Z9 × Z7.
(3) Z2 × Z4 × Z3 × Z3 × Z7.
(4) Z2 × Z4 × Z9 × Z7.
(5) Z8 × Z3 × Z3 × Z7.
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(6) Z8 × Z9 × Z7.

Thus there are six non-isomorphic abelian groups of order 504.
Here is an interesting consequence of the fundamental theorem:

Corollary 1.11. If m divides the order of a finite abelian group G then
there is a subgroup H of G of order m.

Proof. By (1.9) G is isomorphic to

Zp
a1
1
× Zp

a2
2
× · · · × Zpann

where p1, p2, . . . , pn are prime numbers and a1, a2, . . . , an are positive
integers. There are no factors of Z, as G is finite. In particular the
order of G is pa11 p

a2
2 p

a3
3 . . . pann . As m divides the order of G, we may

find 0 ≤ bi ≤ ai such that

m = pb11 p
b2
2 p

b3
3 . . . p

bn
n .

Let ci = ai − bi. Note that
pcii

is an element of Zp
ai
i

of order pbii . Therefore

〈pcii 〉
is a subgroup of order pbii and the product

〈pc11 〉 × 〈pc22 〉 × · · · × 〈pcnn 〉,
has order m = pb11 p

b2
2 p

b3
3 . . . p

bn
n . �
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